Codeless time series analysis with KNIME: a practical guide to implementing forecasting models for time series analysis applications
Perform time series analysis using KNIME Analytics Platform, covering both statistical methods and machine learning-based methods Key Features Gain a solid understanding of time series analysis and its applications using KNIME Learn how to apply popular statistical and machine learning time series a...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Birmingham ; Mumbai
Packt
July 2022
|
Ausgabe: | Community edition |
Schlagworte: | |
Online-Zugang: | DE-Aug4 DE-M347 DE-898 DE-860 DE-91 DE-706 DE-824 DE-29 DE-573 URL des Erstveröffentlichers |
Zusammenfassung: | Perform time series analysis using KNIME Analytics Platform, covering both statistical methods and machine learning-based methods Key Features Gain a solid understanding of time series analysis and its applications using KNIME Learn how to apply popular statistical and machine learning time series analysis techniques Integrate other tools such as Spark, H2O, and Keras with KNIME within the same application Book Description This book will take you on a practical journey, teaching you how to implement solutions for many use cases involving time series analysis techniques. This learning journey is organized in a crescendo of difficulty, starting from the easiest yet effective techniques applied to weather forecasting, then introducing ARIMA and its variations, moving on to machine learning for audio signal classification, training deep learning architectures to predict glucose levels and electrical energy demand, and ending with an approach to anomaly detection in IoT. There's no time series analysis book without a solution for stock price predictions and you'll find this use case at the end of the book, together with a few more demand prediction use cases that rely on the integration of KNIME Analytics Platform and other external tools. By the end of this time series book, you'll have learned about popular time series analysis techniques and algorithms, KNIME Analytics Platform, its time series extension, and how to apply both to common use cases. What you will learn Install and configure KNIME time series integration Implement common preprocessing techniques before analyzing data Visualize and display time series data in the form of plots and graphs Separate time series data into trends, seasonality, and residuals Train and deploy FFNN and LSTM to perform predictive analysis Use multivariate analysis by enabling GPU training for neural networks Train and deploy an ML-based forecasting model using Spark and H2O Who this book is for This book is for data analysts and data scientists who want to develop forecasting applications on time series data. While no coding skills are required thanks to the codeless implementation of the examples, basic knowledge of KNIME Analytics Platform is assumed. The first part of the book targets beginners in time series analysis, and the subsequent parts of the book challenge both beginners as well as advanced users by introducing real-world time series applications. |
Beschreibung: | 1 Online-Ressource (xvii, 372 Seiten) Illustrationen, Diagramme |
ISBN: | 9781803239972 |
Internformat
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV048592965 | ||
003 | DE-604 | ||
005 | 20240424 | ||
007 | cr|uuu---uuuuu | ||
008 | 221205s2022 xx a||| o|||| 00||| eng d | ||
020 | |a 9781803239972 |c Online, PDF |9 978-1-80323-997-2 | ||
035 | |a (ZDB-30-PQE)EBC7072635 | ||
035 | |a (OCoLC)1347360411 | ||
035 | |a (DE-599)KEP082178283 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-860 |a DE-706 |a DE-M347 |a DE-29 |a DE-91 |a DE-898 |a DE-824 |a DE-573 | ||
082 | 0 | |a 005.7/2 |2 23 | |
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
100 | 1 | |a Weisinger, Corey |e Verfasser |4 aut | |
245 | 1 | 0 | |a Codeless time series analysis with KNIME |b a practical guide to implementing forecasting models for time series analysis applications |c Corey Weisinger, Maarit Widmann, Daniele Tonini |
250 | |a Community edition | ||
264 | 1 | |a Birmingham ; Mumbai |b Packt |c July 2022 | |
300 | |a 1 Online-Ressource (xvii, 372 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a Perform time series analysis using KNIME Analytics Platform, covering both statistical methods and machine learning-based methods Key Features Gain a solid understanding of time series analysis and its applications using KNIME Learn how to apply popular statistical and machine learning time series analysis techniques Integrate other tools such as Spark, H2O, and Keras with KNIME within the same application Book Description This book will take you on a practical journey, teaching you how to implement solutions for many use cases involving time series analysis techniques. This learning journey is organized in a crescendo of difficulty, starting from the easiest yet effective techniques applied to weather forecasting, then introducing ARIMA and its variations, moving on to machine learning for audio signal classification, training deep learning architectures to predict glucose levels and electrical energy demand, and ending with an approach to anomaly detection in IoT. | |
520 | 3 | |a There's no time series analysis book without a solution for stock price predictions and you'll find this use case at the end of the book, together with a few more demand prediction use cases that rely on the integration of KNIME Analytics Platform and other external tools. By the end of this time series book, you'll have learned about popular time series analysis techniques and algorithms, KNIME Analytics Platform, its time series extension, and how to apply both to common use cases. | |
520 | 3 | |a What you will learn Install and configure KNIME time series integration Implement common preprocessing techniques before analyzing data Visualize and display time series data in the form of plots and graphs Separate time series data into trends, seasonality, and residuals Train and deploy FFNN and LSTM to perform predictive analysis Use multivariate analysis by enabling GPU training for neural networks Train and deploy an ML-based forecasting model using Spark and H2O Who this book is for This book is for data analysts and data scientists who want to develop forecasting applications on time series data. While no coding skills are required thanks to the codeless implementation of the examples, basic knowledge of KNIME Analytics Platform is assumed. The first part of the book targets beginners in time series analysis, and the subsequent parts of the book challenge both beginners as well as advanced users by introducing real-world time series applications. | |
650 | 0 | 7 | |a Open Source |0 (DE-588)4548264-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenanalyse |0 (DE-588)4123037-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Prognoseverfahren |0 (DE-588)4358095-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zeitreihenanalyse |0 (DE-588)4067486-1 |2 gnd |9 rswk-swf |
653 | 0 | |a Data mining | |
653 | 0 | |a Quantitative research | |
653 | 0 | |a Open source software | |
653 | 0 | |a Data mining | |
653 | 0 | |a Open source software | |
653 | 0 | |a Quantitative research | |
653 | 0 | |a Electronic books | |
689 | 0 | 0 | |a Datenanalyse |0 (DE-588)4123037-1 |D s |
689 | 0 | 1 | |a Zeitreihenanalyse |0 (DE-588)4067486-1 |D s |
689 | 0 | 2 | |a Prognoseverfahren |0 (DE-588)4358095-6 |D s |
689 | 0 | 3 | |a Open Source |0 (DE-588)4548264-0 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Widmann, Maarit |e Verfasser |4 aut | |
700 | 1 | |a Tonini, Daniele |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-80323-206-5 |
856 | 4 | 0 | |u https://portal.igpublish.com/iglibrary/search/PACKT0006374.html |x Aggregator |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-30-ORH | ||
912 | |a ZDB-30-PQE | ||
912 | |a ZDB-221-PDA | ||
912 | |a ZDB-221-PPK | ||
912 | |a ZDB-4-NLEBK | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033968635 | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006374.html |l DE-Aug4 |p ZDB-221-PPK |q FHA_PDA_PPK |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006374.html |l DE-M347 |p ZDB-221-PDA |q FHM_PDA_PDA_Kauf |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006374.html |l DE-898 |p ZDB-221-PDA |x Verlag |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006374.html |l DE-860 |p ZDB-221-PDA |q FLA_PDA_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006374.html |l DE-91 |p ZDB-221-PPK |q TUM_PDA_PPK_Kauf |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006374.html |l DE-706 |p ZDB-221-PDA |x Aggregator |3 Volltext | |
966 | e | |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3342966 |l DE-824 |p ZDB-4-NLEBK |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=7072635 |l DE-29 |p ZDB-30-PQE |q UER_PDA_PQE_Kauf_2023 |x Aggregator |3 Volltext | |
966 | e | |u https://portal.igpublish.com/iglibrary/search/PACKT0006374.html |l DE-573 |p ZDB-221-PDA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1822762098901385216 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Weisinger, Corey Widmann, Maarit Tonini, Daniele |
author_facet | Weisinger, Corey Widmann, Maarit Tonini, Daniele |
author_role | aut aut aut |
author_sort | Weisinger, Corey |
author_variant | c w cw m w mw d t dt |
building | Verbundindex |
bvnumber | BV048592965 |
classification_rvk | ST 301 |
collection | ZDB-30-ORH ZDB-30-PQE ZDB-221-PDA ZDB-221-PPK ZDB-4-NLEBK |
ctrlnum | (ZDB-30-PQE)EBC7072635 (OCoLC)1347360411 (DE-599)KEP082178283 |
dewey-full | 005.7/2 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 005 - Computer programming, programs, data, security |
dewey-raw | 005.7/2 |
dewey-search | 005.7/2 |
dewey-sort | 15.7 12 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
edition | Community edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001c 4500</leader><controlfield tag="001">BV048592965</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240424</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">221205s2022 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781803239972</subfield><subfield code="c">Online, PDF</subfield><subfield code="9">978-1-80323-997-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC7072635</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1347360411</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP082178283</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-860</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-573</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">005.7/2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Weisinger, Corey</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Codeless time series analysis with KNIME</subfield><subfield code="b">a practical guide to implementing forecasting models for time series analysis applications</subfield><subfield code="c">Corey Weisinger, Maarit Widmann, Daniele Tonini</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Community edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Birmingham ; Mumbai</subfield><subfield code="b">Packt</subfield><subfield code="c">July 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xvii, 372 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Perform time series analysis using KNIME Analytics Platform, covering both statistical methods and machine learning-based methods Key Features Gain a solid understanding of time series analysis and its applications using KNIME Learn how to apply popular statistical and machine learning time series analysis techniques Integrate other tools such as Spark, H2O, and Keras with KNIME within the same application Book Description This book will take you on a practical journey, teaching you how to implement solutions for many use cases involving time series analysis techniques. This learning journey is organized in a crescendo of difficulty, starting from the easiest yet effective techniques applied to weather forecasting, then introducing ARIMA and its variations, moving on to machine learning for audio signal classification, training deep learning architectures to predict glucose levels and electrical energy demand, and ending with an approach to anomaly detection in IoT.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">There's no time series analysis book without a solution for stock price predictions and you'll find this use case at the end of the book, together with a few more demand prediction use cases that rely on the integration of KNIME Analytics Platform and other external tools. By the end of this time series book, you'll have learned about popular time series analysis techniques and algorithms, KNIME Analytics Platform, its time series extension, and how to apply both to common use cases.</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">What you will learn Install and configure KNIME time series integration Implement common preprocessing techniques before analyzing data Visualize and display time series data in the form of plots and graphs Separate time series data into trends, seasonality, and residuals Train and deploy FFNN and LSTM to perform predictive analysis Use multivariate analysis by enabling GPU training for neural networks Train and deploy an ML-based forecasting model using Spark and H2O Who this book is for This book is for data analysts and data scientists who want to develop forecasting applications on time series data. While no coding skills are required thanks to the codeless implementation of the examples, basic knowledge of KNIME Analytics Platform is assumed. The first part of the book targets beginners in time series analysis, and the subsequent parts of the book challenge both beginners as well as advanced users by introducing real-world time series applications.</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Open Source</subfield><subfield code="0">(DE-588)4548264-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Prognoseverfahren</subfield><subfield code="0">(DE-588)4358095-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Quantitative research</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Open source software</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Data mining</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Open source software</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Quantitative research</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Datenanalyse</subfield><subfield code="0">(DE-588)4123037-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Zeitreihenanalyse</subfield><subfield code="0">(DE-588)4067486-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Prognoseverfahren</subfield><subfield code="0">(DE-588)4358095-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Open Source</subfield><subfield code="0">(DE-588)4548264-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Widmann, Maarit</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tonini, Daniele</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-80323-206-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006374.html</subfield><subfield code="x">Aggregator</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-ORH</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-221-PDA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-221-PPK</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-NLEBK</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033968635</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006374.html</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-221-PPK</subfield><subfield code="q">FHA_PDA_PPK</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006374.html</subfield><subfield code="l">DE-M347</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="q">FHM_PDA_PDA_Kauf</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006374.html</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006374.html</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="q">FLA_PDA_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006374.html</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-221-PPK</subfield><subfield code="q">TUM_PDA_PPK_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006374.html</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=3342966</subfield><subfield code="l">DE-824</subfield><subfield code="p">ZDB-4-NLEBK</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/erlangen/detail.action?docID=7072635</subfield><subfield code="l">DE-29</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UER_PDA_PQE_Kauf_2023</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://portal.igpublish.com/iglibrary/search/PACKT0006374.html</subfield><subfield code="l">DE-573</subfield><subfield code="p">ZDB-221-PDA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048592965 |
illustrated | Illustrated |
index_date | 2024-07-03T21:07:59Z |
indexdate | 2025-01-31T11:03:18Z |
institution | BVB |
isbn | 9781803239972 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033968635 |
oclc_num | 1347360411 |
open_access_boolean | |
owner | DE-860 DE-706 DE-M347 DE-29 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-824 DE-573 |
owner_facet | DE-860 DE-706 DE-M347 DE-29 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-824 DE-573 |
physical | 1 Online-Ressource (xvii, 372 Seiten) Illustrationen, Diagramme |
psigel | ZDB-30-ORH ZDB-30-PQE ZDB-221-PDA ZDB-221-PPK ZDB-4-NLEBK ZDB-221-PPK FHA_PDA_PPK ZDB-221-PDA FHM_PDA_PDA_Kauf ZDB-221-PDA FLA_PDA_Kauf ZDB-221-PPK TUM_PDA_PPK_Kauf ZDB-30-PQE UER_PDA_PQE_Kauf_2023 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Packt |
record_format | marc |
spelling | Weisinger, Corey Verfasser aut Codeless time series analysis with KNIME a practical guide to implementing forecasting models for time series analysis applications Corey Weisinger, Maarit Widmann, Daniele Tonini Community edition Birmingham ; Mumbai Packt July 2022 1 Online-Ressource (xvii, 372 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Perform time series analysis using KNIME Analytics Platform, covering both statistical methods and machine learning-based methods Key Features Gain a solid understanding of time series analysis and its applications using KNIME Learn how to apply popular statistical and machine learning time series analysis techniques Integrate other tools such as Spark, H2O, and Keras with KNIME within the same application Book Description This book will take you on a practical journey, teaching you how to implement solutions for many use cases involving time series analysis techniques. This learning journey is organized in a crescendo of difficulty, starting from the easiest yet effective techniques applied to weather forecasting, then introducing ARIMA and its variations, moving on to machine learning for audio signal classification, training deep learning architectures to predict glucose levels and electrical energy demand, and ending with an approach to anomaly detection in IoT. There's no time series analysis book without a solution for stock price predictions and you'll find this use case at the end of the book, together with a few more demand prediction use cases that rely on the integration of KNIME Analytics Platform and other external tools. By the end of this time series book, you'll have learned about popular time series analysis techniques and algorithms, KNIME Analytics Platform, its time series extension, and how to apply both to common use cases. What you will learn Install and configure KNIME time series integration Implement common preprocessing techniques before analyzing data Visualize and display time series data in the form of plots and graphs Separate time series data into trends, seasonality, and residuals Train and deploy FFNN and LSTM to perform predictive analysis Use multivariate analysis by enabling GPU training for neural networks Train and deploy an ML-based forecasting model using Spark and H2O Who this book is for This book is for data analysts and data scientists who want to develop forecasting applications on time series data. While no coding skills are required thanks to the codeless implementation of the examples, basic knowledge of KNIME Analytics Platform is assumed. The first part of the book targets beginners in time series analysis, and the subsequent parts of the book challenge both beginners as well as advanced users by introducing real-world time series applications. Open Source (DE-588)4548264-0 gnd rswk-swf Datenanalyse (DE-588)4123037-1 gnd rswk-swf Prognoseverfahren (DE-588)4358095-6 gnd rswk-swf Zeitreihenanalyse (DE-588)4067486-1 gnd rswk-swf Data mining Quantitative research Open source software Electronic books Datenanalyse (DE-588)4123037-1 s Zeitreihenanalyse (DE-588)4067486-1 s Prognoseverfahren (DE-588)4358095-6 s Open Source (DE-588)4548264-0 s DE-604 Widmann, Maarit Verfasser aut Tonini, Daniele Verfasser aut Erscheint auch als Druck-Ausgabe 978-1-80323-206-5 https://portal.igpublish.com/iglibrary/search/PACKT0006374.html Aggregator URL des Erstveröffentlichers Volltext |
spellingShingle | Weisinger, Corey Widmann, Maarit Tonini, Daniele Codeless time series analysis with KNIME a practical guide to implementing forecasting models for time series analysis applications Open Source (DE-588)4548264-0 gnd Datenanalyse (DE-588)4123037-1 gnd Prognoseverfahren (DE-588)4358095-6 gnd Zeitreihenanalyse (DE-588)4067486-1 gnd |
subject_GND | (DE-588)4548264-0 (DE-588)4123037-1 (DE-588)4358095-6 (DE-588)4067486-1 |
title | Codeless time series analysis with KNIME a practical guide to implementing forecasting models for time series analysis applications |
title_auth | Codeless time series analysis with KNIME a practical guide to implementing forecasting models for time series analysis applications |
title_exact_search | Codeless time series analysis with KNIME a practical guide to implementing forecasting models for time series analysis applications |
title_exact_search_txtP | Codeless time series analysis with KNIME a practical guide to implementing forecasting models for time series analysis applications |
title_full | Codeless time series analysis with KNIME a practical guide to implementing forecasting models for time series analysis applications Corey Weisinger, Maarit Widmann, Daniele Tonini |
title_fullStr | Codeless time series analysis with KNIME a practical guide to implementing forecasting models for time series analysis applications Corey Weisinger, Maarit Widmann, Daniele Tonini |
title_full_unstemmed | Codeless time series analysis with KNIME a practical guide to implementing forecasting models for time series analysis applications Corey Weisinger, Maarit Widmann, Daniele Tonini |
title_short | Codeless time series analysis with KNIME |
title_sort | codeless time series analysis with knime a practical guide to implementing forecasting models for time series analysis applications |
title_sub | a practical guide to implementing forecasting models for time series analysis applications |
topic | Open Source (DE-588)4548264-0 gnd Datenanalyse (DE-588)4123037-1 gnd Prognoseverfahren (DE-588)4358095-6 gnd Zeitreihenanalyse (DE-588)4067486-1 gnd |
topic_facet | Open Source Datenanalyse Prognoseverfahren Zeitreihenanalyse |
url | https://portal.igpublish.com/iglibrary/search/PACKT0006374.html |
work_keys_str_mv | AT weisingercorey codelesstimeseriesanalysiswithknimeapracticalguidetoimplementingforecastingmodelsfortimeseriesanalysisapplications AT widmannmaarit codelesstimeseriesanalysiswithknimeapracticalguidetoimplementingforecastingmodelsfortimeseriesanalysisapplications AT toninidaniele codelesstimeseriesanalysiswithknimeapracticalguidetoimplementingforecastingmodelsfortimeseriesanalysisapplications |