Methods and techniques in deep learning: advancements in mmWave radar solutions
"The advent of deep learning has transformed many fields and resulted in state-of-art solutions in computer vision, natural language processing and speech processing, etc. However, the application of deep learning algorithms to radars is still by and large at its nascent stage. A radar system c...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Piscataway, NJ
IEEE Press
[2023]
Hoboken, New Jersey Wiley |
Schlagworte: | |
Zusammenfassung: | "The advent of deep learning has transformed many fields and resulted in state-of-art solutions in computer vision, natural language processing and speech processing, etc. However, the application of deep learning algorithms to radars is still by and large at its nascent stage. A radar system consists of two parts: first, the radar hardware, including the RF transceiver, waveform generator, receiver unit, antenna and system packaging. State-of-art SiGe and CMOS are candidate technologies for mm-wave short-range radars and offer flexibility for integration and smaller form-factor. Second part is the sensing aspect, which relies on signal processing or deep learning algorithms that parses the radar return echo into meaningful target information facilitating a desired application"-- |
Beschreibung: | xxiv, 312 Seiten Illustrationen, Diagramme |
ISBN: | 9781119910657 111991065X |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV048573186 | ||
003 | DE-604 | ||
005 | 20231128 | ||
007 | t | ||
008 | 221122s2023 a||| |||| 00||| eng d | ||
020 | |a 9781119910657 |9 978-1-119-91065-7 | ||
020 | |a 111991065X |9 111991065X | ||
035 | |a (OCoLC)1352883062 | ||
035 | |a (DE-599)BVBBV048573186 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T | ||
100 | 1 | |a Santra, Avik |e Verfasser |0 (DE-588)1259098281 |4 aut | |
245 | 1 | 0 | |a Methods and techniques in deep learning |b advancements in mmWave radar solutions |c Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas Stadelmayer, Michael Stephan, Anand Dubey (Infineon Technologies, Munich, Germany) |
264 | 1 | |a Piscataway, NJ |b IEEE Press |c [2023] | |
264 | 1 | |a Hoboken, New Jersey |b Wiley | |
300 | |a xxiv, 312 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
520 | 3 | |a "The advent of deep learning has transformed many fields and resulted in state-of-art solutions in computer vision, natural language processing and speech processing, etc. However, the application of deep learning algorithms to radars is still by and large at its nascent stage. A radar system consists of two parts: first, the radar hardware, including the RF transceiver, waveform generator, receiver unit, antenna and system packaging. State-of-art SiGe and CMOS are candidate technologies for mm-wave short-range radars and offer flexibility for integration and smaller form-factor. Second part is the sensing aspect, which relies on signal processing or deep learning algorithms that parses the radar return echo into meaningful target information facilitating a desired application"-- | |
653 | 0 | |a Millimeter wave radar / Data processing | |
653 | 0 | |a Radar targets / Identification / Data processing | |
653 | 0 | |a Radar receiving apparatus / Data processing | |
653 | 0 | |a Deep learning (Machine learning) | |
700 | 1 | |a Hazra, Souvik |e Verfasser |4 aut | |
700 | 1 | |a Servadei, Lorenzo |e Verfasser |4 aut | |
700 | 1 | |a Stadelmayer, Thomas |e Verfasser |4 aut | |
700 | 1 | |a Stephan, Michael |e Verfasser |4 aut | |
700 | 1 | |a Dubey, Anand |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 9781119910664 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 9781119910671 |
999 | |a oai:aleph.bib-bvb.de:BVB01-033949214 |
Datensatz im Suchindex
_version_ | 1804184597446000640 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Santra, Avik Hazra, Souvik Servadei, Lorenzo Stadelmayer, Thomas Stephan, Michael Dubey, Anand |
author_GND | (DE-588)1259098281 |
author_facet | Santra, Avik Hazra, Souvik Servadei, Lorenzo Stadelmayer, Thomas Stephan, Michael Dubey, Anand |
author_role | aut aut aut aut aut aut |
author_sort | Santra, Avik |
author_variant | a s as s h sh l s ls t s ts m s ms a d ad |
building | Verbundindex |
bvnumber | BV048573186 |
ctrlnum | (OCoLC)1352883062 (DE-599)BVBBV048573186 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02419nam a22004218c 4500</leader><controlfield tag="001">BV048573186</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231128 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">221122s2023 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119910657</subfield><subfield code="9">978-1-119-91065-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">111991065X</subfield><subfield code="9">111991065X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1352883062</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048573186</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Santra, Avik</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1259098281</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Methods and techniques in deep learning</subfield><subfield code="b">advancements in mmWave radar solutions</subfield><subfield code="c">Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas Stadelmayer, Michael Stephan, Anand Dubey (Infineon Technologies, Munich, Germany)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Piscataway, NJ</subfield><subfield code="b">IEEE Press</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hoboken, New Jersey</subfield><subfield code="b">Wiley</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiv, 312 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"The advent of deep learning has transformed many fields and resulted in state-of-art solutions in computer vision, natural language processing and speech processing, etc. However, the application of deep learning algorithms to radars is still by and large at its nascent stage. A radar system consists of two parts: first, the radar hardware, including the RF transceiver, waveform generator, receiver unit, antenna and system packaging. State-of-art SiGe and CMOS are candidate technologies for mm-wave short-range radars and offer flexibility for integration and smaller form-factor. Second part is the sensing aspect, which relies on signal processing or deep learning algorithms that parses the radar return echo into meaningful target information facilitating a desired application"--</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Millimeter wave radar / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Radar targets / Identification / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Radar receiving apparatus / Data processing</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Deep learning (Machine learning)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hazra, Souvik</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Servadei, Lorenzo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stadelmayer, Thomas</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stephan, Michael</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dubey, Anand</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">9781119910664</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">9781119910671</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033949214</subfield></datafield></record></collection> |
id | DE-604.BV048573186 |
illustrated | Illustrated |
index_date | 2024-07-03T21:02:27Z |
indexdate | 2024-07-10T09:41:52Z |
institution | BVB |
isbn | 9781119910657 111991065X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033949214 |
oclc_num | 1352883062 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | xxiv, 312 Seiten Illustrationen, Diagramme |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | IEEE Press Wiley |
record_format | marc |
spelling | Santra, Avik Verfasser (DE-588)1259098281 aut Methods and techniques in deep learning advancements in mmWave radar solutions Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas Stadelmayer, Michael Stephan, Anand Dubey (Infineon Technologies, Munich, Germany) Piscataway, NJ IEEE Press [2023] Hoboken, New Jersey Wiley xxiv, 312 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier "The advent of deep learning has transformed many fields and resulted in state-of-art solutions in computer vision, natural language processing and speech processing, etc. However, the application of deep learning algorithms to radars is still by and large at its nascent stage. A radar system consists of two parts: first, the radar hardware, including the RF transceiver, waveform generator, receiver unit, antenna and system packaging. State-of-art SiGe and CMOS are candidate technologies for mm-wave short-range radars and offer flexibility for integration and smaller form-factor. Second part is the sensing aspect, which relies on signal processing or deep learning algorithms that parses the radar return echo into meaningful target information facilitating a desired application"-- Millimeter wave radar / Data processing Radar targets / Identification / Data processing Radar receiving apparatus / Data processing Deep learning (Machine learning) Hazra, Souvik Verfasser aut Servadei, Lorenzo Verfasser aut Stadelmayer, Thomas Verfasser aut Stephan, Michael Verfasser aut Dubey, Anand Verfasser aut Erscheint auch als Online-Ausgabe, PDF 9781119910664 Erscheint auch als Online-Ausgabe, EPUB 9781119910671 |
spellingShingle | Santra, Avik Hazra, Souvik Servadei, Lorenzo Stadelmayer, Thomas Stephan, Michael Dubey, Anand Methods and techniques in deep learning advancements in mmWave radar solutions |
title | Methods and techniques in deep learning advancements in mmWave radar solutions |
title_auth | Methods and techniques in deep learning advancements in mmWave radar solutions |
title_exact_search | Methods and techniques in deep learning advancements in mmWave radar solutions |
title_exact_search_txtP | Methods and techniques in deep learning advancements in mmWave radar solutions |
title_full | Methods and techniques in deep learning advancements in mmWave radar solutions Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas Stadelmayer, Michael Stephan, Anand Dubey (Infineon Technologies, Munich, Germany) |
title_fullStr | Methods and techniques in deep learning advancements in mmWave radar solutions Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas Stadelmayer, Michael Stephan, Anand Dubey (Infineon Technologies, Munich, Germany) |
title_full_unstemmed | Methods and techniques in deep learning advancements in mmWave radar solutions Avik Santra, Souvik Hazra, Lorenzo Servadei, Thomas Stadelmayer, Michael Stephan, Anand Dubey (Infineon Technologies, Munich, Germany) |
title_short | Methods and techniques in deep learning |
title_sort | methods and techniques in deep learning advancements in mmwave radar solutions |
title_sub | advancements in mmWave radar solutions |
work_keys_str_mv | AT santraavik methodsandtechniquesindeeplearningadvancementsinmmwaveradarsolutions AT hazrasouvik methodsandtechniquesindeeplearningadvancementsinmmwaveradarsolutions AT servadeilorenzo methodsandtechniquesindeeplearningadvancementsinmmwaveradarsolutions AT stadelmayerthomas methodsandtechniquesindeeplearningadvancementsinmmwaveradarsolutions AT stephanmichael methodsandtechniquesindeeplearningadvancementsinmmwaveradarsolutions AT dubeyanand methodsandtechniquesindeeplearningadvancementsinmmwaveradarsolutions |