The life of primes in 37 episodes:
An infinite family -- The search for large primes -- The great insight of Legendre and Gauss -- Euler, the visionary -- Dirichlet's theorem -- The Bertrand postulate and the Chebyshev theorem -- Riemann shows the way -- Connecting the zeta function to the prime counting function -- The intrigui...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence, Rhode Island
American Mathematical Society
[2021]
|
Schlagworte: | |
Zusammenfassung: | An infinite family -- The search for large primes -- The great insight of Legendre and Gauss -- Euler, the visionary -- Dirichlet's theorem -- The Bertrand postulate and the Chebyshev theorem -- Riemann shows the way -- Connecting the zeta function to the prime counting function -- The intriguing Riemann Hypothesis -- Mertens' theorems -- Counting the number of primes, from Meissel to today -- Hadamard and de la Vall'ee Poussin stun the world -- An elementary proof of the prime number theorem -- Sieve methods -- Prime clusters -- Primes in arithmetic progression -- Small and large gaps between consecutive primes -- Irregularities in the distribution of primes -- Exceptional sets of primes -- The birth of probabilistic number theory -- The multiplicative structure of integers -- Generalized prime number systems -- Establishing if a given integer is prime or not -- The Lucas and P'epin primality tests -- Those annoying Carmichael numbers -- The Lucas-Lehmer primality test for Mersenne numbers -- The probabilistic Miller-Rabin primality test -- The deterministic AKS primality test -- The Fermat factorisation algorithm -- From the Germat factorisation algorithm to the quadratic sieve -- The Pollard p - 1 factorisation algorithm -- The Pollard Rho factorisation algorithm -- Two factorisation methods based on modern algebra -- Algebraic factorisation -- Measuring and comparing the speed of various algorithms -- Cryptography, from Julius Caesar to the RSA cryptosystem -- The present and future life of primes. |
Beschreibung: | Includes bibliographical references and indexes 2106 |
Beschreibung: | xiv, 329 Seiten Diagramme |
ISBN: | 9781470464899 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048563801 | ||
003 | DE-604 | ||
005 | 20221222 | ||
007 | t | ||
008 | 221116s2021 xxu|||| |||| 00||| eng d | ||
020 | |a 9781470464899 |c paperback |9 978-1-4704-6489-9 | ||
035 | |a (OCoLC)1343852319 | ||
035 | |a (DE-599)KXP1747133019 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-188 | ||
082 | 0 | |a 512.7/23 | |
084 | |a SK 180 |0 (DE-625)143222: |2 rvk | ||
100 | 1 | |a Koninck, Jean-Marie de |d 1948- |e Verfasser |0 (DE-588)141191112 |4 aut | |
245 | 1 | 0 | |a The life of primes in 37 episodes |c Jean-Marie De Koninck, Nicolas Doyon |
246 | 1 | 3 | |a The life of primes in thirty seven episodes |
264 | 1 | |a Providence, Rhode Island |b American Mathematical Society |c [2021] | |
300 | |a xiv, 329 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and indexes | ||
500 | |a 2106 | ||
520 | 3 | |a An infinite family -- The search for large primes -- The great insight of Legendre and Gauss -- Euler, the visionary -- Dirichlet's theorem -- The Bertrand postulate and the Chebyshev theorem -- Riemann shows the way -- Connecting the zeta function to the prime counting function -- The intriguing Riemann Hypothesis -- Mertens' theorems -- Counting the number of primes, from Meissel to today -- Hadamard and de la Vall'ee Poussin stun the world -- An elementary proof of the prime number theorem -- Sieve methods -- Prime clusters -- Primes in arithmetic progression -- Small and large gaps between consecutive primes -- Irregularities in the distribution of primes -- Exceptional sets of primes -- The birth of probabilistic number theory -- The multiplicative structure of integers -- Generalized prime number systems -- Establishing if a given integer is prime or not -- The Lucas and P'epin primality tests -- Those annoying Carmichael numbers -- The Lucas-Lehmer primality test for Mersenne numbers -- The probabilistic Miller-Rabin primality test -- The deterministic AKS primality test -- The Fermat factorisation algorithm -- From the Germat factorisation algorithm to the quadratic sieve -- The Pollard p - 1 factorisation algorithm -- The Pollard Rho factorisation algorithm -- Two factorisation methods based on modern algebra -- Algebraic factorisation -- Measuring and comparing the speed of various algorithms -- Cryptography, from Julius Caesar to the RSA cryptosystem -- The present and future life of primes. | |
653 | 0 | |a Numbers, Prime | |
653 | 0 | |a Number theory | |
653 | 0 | |a Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Multiplicative structure; Euclidean algorithm; greatest common divisors | |
653 | 0 | |a Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Primes | |
653 | 0 | |a Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Factorization; primality | |
653 | 0 | |a Number theory -- Multiplicative number theory -- Distribution of primes | |
653 | 0 | |a Number theory -- Zeta and L-functions: analytic theory -- Nonreal zeros of zeta (s) and L(s, \chi); Riemann and other hypotheses | |
700 | 1 | |a Doyon, Nicolas |d 1977- |e Verfasser |0 (DE-588)1247175812 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4704-6537-7 |
999 | |a oai:aleph.bib-bvb.de:BVB01-033939938 |
Datensatz im Suchindex
_version_ | 1804184579554148352 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Koninck, Jean-Marie de 1948- Doyon, Nicolas 1977- |
author_GND | (DE-588)141191112 (DE-588)1247175812 |
author_facet | Koninck, Jean-Marie de 1948- Doyon, Nicolas 1977- |
author_role | aut aut |
author_sort | Koninck, Jean-Marie de 1948- |
author_variant | j m d k jmd jmdk n d nd |
building | Verbundindex |
bvnumber | BV048563801 |
classification_rvk | SK 180 |
ctrlnum | (OCoLC)1343852319 (DE-599)KXP1747133019 |
dewey-full | 512.7/23 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7/23 |
dewey-search | 512.7/23 |
dewey-sort | 3512.7 223 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03460nam a2200445 c 4500</leader><controlfield tag="001">BV048563801</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221222 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">221116s2021 xxu|||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470464899</subfield><subfield code="c">paperback</subfield><subfield code="9">978-1-4704-6489-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1343852319</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1747133019</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 180</subfield><subfield code="0">(DE-625)143222:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koninck, Jean-Marie de</subfield><subfield code="d">1948-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141191112</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The life of primes in 37 episodes</subfield><subfield code="c">Jean-Marie De Koninck, Nicolas Doyon</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">The life of primes in thirty seven episodes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence, Rhode Island</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 329 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and indexes</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2106</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">An infinite family -- The search for large primes -- The great insight of Legendre and Gauss -- Euler, the visionary -- Dirichlet's theorem -- The Bertrand postulate and the Chebyshev theorem -- Riemann shows the way -- Connecting the zeta function to the prime counting function -- The intriguing Riemann Hypothesis -- Mertens' theorems -- Counting the number of primes, from Meissel to today -- Hadamard and de la Vall'ee Poussin stun the world -- An elementary proof of the prime number theorem -- Sieve methods -- Prime clusters -- Primes in arithmetic progression -- Small and large gaps between consecutive primes -- Irregularities in the distribution of primes -- Exceptional sets of primes -- The birth of probabilistic number theory -- The multiplicative structure of integers -- Generalized prime number systems -- Establishing if a given integer is prime or not -- The Lucas and P'epin primality tests -- Those annoying Carmichael numbers -- The Lucas-Lehmer primality test for Mersenne numbers -- The probabilistic Miller-Rabin primality test -- The deterministic AKS primality test -- The Fermat factorisation algorithm -- From the Germat factorisation algorithm to the quadratic sieve -- The Pollard p - 1 factorisation algorithm -- The Pollard Rho factorisation algorithm -- Two factorisation methods based on modern algebra -- Algebraic factorisation -- Measuring and comparing the speed of various algorithms -- Cryptography, from Julius Caesar to the RSA cryptosystem -- The present and future life of primes.</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Numbers, Prime</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Multiplicative structure; Euclidean algorithm; greatest common divisors</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Primes</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Factorization; primality</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory -- Multiplicative number theory -- Distribution of primes</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory -- Zeta and L-functions: analytic theory -- Nonreal zeros of zeta (s) and L(s, \chi); Riemann and other hypotheses</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Doyon, Nicolas</subfield><subfield code="d">1977-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1247175812</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-6537-7</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033939938</subfield></datafield></record></collection> |
id | DE-604.BV048563801 |
illustrated | Not Illustrated |
index_date | 2024-07-03T21:00:45Z |
indexdate | 2024-07-10T09:41:35Z |
institution | BVB |
isbn | 9781470464899 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033939938 |
oclc_num | 1343852319 |
open_access_boolean | |
owner | DE-188 |
owner_facet | DE-188 |
physical | xiv, 329 Seiten Diagramme |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | American Mathematical Society |
record_format | marc |
spelling | Koninck, Jean-Marie de 1948- Verfasser (DE-588)141191112 aut The life of primes in 37 episodes Jean-Marie De Koninck, Nicolas Doyon The life of primes in thirty seven episodes Providence, Rhode Island American Mathematical Society [2021] xiv, 329 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and indexes 2106 An infinite family -- The search for large primes -- The great insight of Legendre and Gauss -- Euler, the visionary -- Dirichlet's theorem -- The Bertrand postulate and the Chebyshev theorem -- Riemann shows the way -- Connecting the zeta function to the prime counting function -- The intriguing Riemann Hypothesis -- Mertens' theorems -- Counting the number of primes, from Meissel to today -- Hadamard and de la Vall'ee Poussin stun the world -- An elementary proof of the prime number theorem -- Sieve methods -- Prime clusters -- Primes in arithmetic progression -- Small and large gaps between consecutive primes -- Irregularities in the distribution of primes -- Exceptional sets of primes -- The birth of probabilistic number theory -- The multiplicative structure of integers -- Generalized prime number systems -- Establishing if a given integer is prime or not -- The Lucas and P'epin primality tests -- Those annoying Carmichael numbers -- The Lucas-Lehmer primality test for Mersenne numbers -- The probabilistic Miller-Rabin primality test -- The deterministic AKS primality test -- The Fermat factorisation algorithm -- From the Germat factorisation algorithm to the quadratic sieve -- The Pollard p - 1 factorisation algorithm -- The Pollard Rho factorisation algorithm -- Two factorisation methods based on modern algebra -- Algebraic factorisation -- Measuring and comparing the speed of various algorithms -- Cryptography, from Julius Caesar to the RSA cryptosystem -- The present and future life of primes. Numbers, Prime Number theory Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Multiplicative structure; Euclidean algorithm; greatest common divisors Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Primes Number theory -- Elementary number theory {For analogues in number fields, see 11R04} -- Factorization; primality Number theory -- Multiplicative number theory -- Distribution of primes Number theory -- Zeta and L-functions: analytic theory -- Nonreal zeros of zeta (s) and L(s, \chi); Riemann and other hypotheses Doyon, Nicolas 1977- Verfasser (DE-588)1247175812 aut Erscheint auch als Online-Ausgabe 978-1-4704-6537-7 |
spellingShingle | Koninck, Jean-Marie de 1948- Doyon, Nicolas 1977- The life of primes in 37 episodes |
title | The life of primes in 37 episodes |
title_alt | The life of primes in thirty seven episodes |
title_auth | The life of primes in 37 episodes |
title_exact_search | The life of primes in 37 episodes |
title_exact_search_txtP | The life of primes in 37 episodes |
title_full | The life of primes in 37 episodes Jean-Marie De Koninck, Nicolas Doyon |
title_fullStr | The life of primes in 37 episodes Jean-Marie De Koninck, Nicolas Doyon |
title_full_unstemmed | The life of primes in 37 episodes Jean-Marie De Koninck, Nicolas Doyon |
title_short | The life of primes in 37 episodes |
title_sort | the life of primes in 37 episodes |
work_keys_str_mv | AT koninckjeanmariede thelifeofprimesin37episodes AT doyonnicolas thelifeofprimesin37episodes AT koninckjeanmariede thelifeofprimesinthirtysevenepisodes AT doyonnicolas thelifeofprimesinthirtysevenepisodes |