Mastering reinforcement learning with Python: build next-generation, self-learning models using reinforcement learning techniques and best practices
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Burmingham
Packt Publishing
2020
|
Schlagworte: | |
Online-Zugang: | FWS01 FWS02 |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | 1 Online-Ressource (544 Seiten) |
ISBN: | 9781838644147 9781838648497 |
Internformat
MARC
LEADER | 00000nmm a22000001c 4500 | ||
---|---|---|---|
001 | BV048557646 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 221111s2020 |||| o||u| ||||||eng d | ||
020 | |a 9781838644147 |9 978-1-83864-414-7 | ||
020 | |a 9781838648497 |c Online |9 978-1-83864-849-7 | ||
035 | |a (OCoLC)1350782990 | ||
035 | |a (DE-599)BVBBV048557646 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-862 |a DE-863 | ||
100 | 1 | |a Bilgin, Enes |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mastering reinforcement learning with Python |b build next-generation, self-learning models using reinforcement learning techniques and best practices |c Enes Bilgin |
264 | 1 | |a Burmingham |b Packt Publishing |c 2020 | |
300 | |a 1 Online-Ressource (544 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Operante Konditionierung |0 (DE-588)4172613-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
653 | 0 | |a Artificial Intelligence | |
653 | 0 | |a General | |
653 | 0 | |a Machine Theory | |
653 | 0 | |a Mainframes & Minicomputers see Hardware | |
653 | 0 | |a Mainframes & Minicomputers | |
653 | 0 | |a Python | |
653 | 0 | |a Neural Networks | |
689 | 0 | 0 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 1 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 2 | |a Operante Konditionierung |0 (DE-588)4172613-3 |D s |
689 | 0 | 3 | |a Python |g Programmiersprache |0 (DE-588)4434275-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-83864-849-7 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033933899 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=6434423 |l FWS01 |p ZDB-30-PQE |x Aggregator |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=6434423 |l FWS02 |p ZDB-30-PQE |x Aggregator |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 1013945 |
---|---|
_version_ | 1806174777672466432 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Bilgin, Enes |
author_facet | Bilgin, Enes |
author_role | aut |
author_sort | Bilgin, Enes |
author_variant | e b eb |
building | Verbundindex |
bvnumber | BV048557646 |
collection | ZDB-30-PQE |
ctrlnum | (OCoLC)1350782990 (DE-599)BVBBV048557646 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02137nmm a22005171c 4500</leader><controlfield tag="001">BV048557646</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">221111s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838644147</subfield><subfield code="9">978-1-83864-414-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781838648497</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-83864-849-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1350782990</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048557646</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-862</subfield><subfield code="a">DE-863</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bilgin, Enes</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mastering reinforcement learning with Python</subfield><subfield code="b">build next-generation, self-learning models using reinforcement learning techniques and best practices</subfield><subfield code="c">Enes Bilgin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Burmingham</subfield><subfield code="b">Packt Publishing</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (544 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operante Konditionierung</subfield><subfield code="0">(DE-588)4172613-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">General</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Machine Theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mainframes & Minicomputers see Hardware</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Mainframes & Minicomputers</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Python</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Neural Networks</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Operante Konditionierung</subfield><subfield code="0">(DE-588)4172613-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Python</subfield><subfield code="g">Programmiersprache</subfield><subfield code="0">(DE-588)4434275-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-83864-849-7</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033933899</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=6434423</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/fhws/detail.action?docID=6434423</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048557646 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:59:06Z |
indexdate | 2024-08-01T10:54:55Z |
institution | BVB |
isbn | 9781838644147 9781838648497 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033933899 |
oclc_num | 1350782990 |
open_access_boolean | |
owner | DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
owner_facet | DE-862 DE-BY-FWS DE-863 DE-BY-FWS |
physical | 1 Online-Ressource (544 Seiten) |
psigel | ZDB-30-PQE |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Packt Publishing |
record_format | marc |
spellingShingle | Bilgin, Enes Mastering reinforcement learning with Python build next-generation, self-learning models using reinforcement learning techniques and best practices Maschinelles Lernen (DE-588)4193754-5 gnd Python Programmiersprache (DE-588)4434275-5 gnd Operante Konditionierung (DE-588)4172613-3 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
subject_GND | (DE-588)4193754-5 (DE-588)4434275-5 (DE-588)4172613-3 (DE-588)4033447-8 |
title | Mastering reinforcement learning with Python build next-generation, self-learning models using reinforcement learning techniques and best practices |
title_auth | Mastering reinforcement learning with Python build next-generation, self-learning models using reinforcement learning techniques and best practices |
title_exact_search | Mastering reinforcement learning with Python build next-generation, self-learning models using reinforcement learning techniques and best practices |
title_exact_search_txtP | Mastering reinforcement learning with Python build next-generation, self-learning models using reinforcement learning techniques and best practices |
title_full | Mastering reinforcement learning with Python build next-generation, self-learning models using reinforcement learning techniques and best practices Enes Bilgin |
title_fullStr | Mastering reinforcement learning with Python build next-generation, self-learning models using reinforcement learning techniques and best practices Enes Bilgin |
title_full_unstemmed | Mastering reinforcement learning with Python build next-generation, self-learning models using reinforcement learning techniques and best practices Enes Bilgin |
title_short | Mastering reinforcement learning with Python |
title_sort | mastering reinforcement learning with python build next generation self learning models using reinforcement learning techniques and best practices |
title_sub | build next-generation, self-learning models using reinforcement learning techniques and best practices |
topic | Maschinelles Lernen (DE-588)4193754-5 gnd Python Programmiersprache (DE-588)4434275-5 gnd Operante Konditionierung (DE-588)4172613-3 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd |
topic_facet | Maschinelles Lernen Python Programmiersprache Operante Konditionierung Künstliche Intelligenz |
work_keys_str_mv | AT bilginenes masteringreinforcementlearningwithpythonbuildnextgenerationselflearningmodelsusingreinforcementlearningtechniquesandbestpractices |