New machine learning methods for modeling nonlinear interactions in neural data : towards separation and detection of genuine cross-frequency synchronized sources:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
2022
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 1 Online-Ressource (118 Seiten) Illustrationen, Diagramme |
DOI: | 10.14279/depositonce-16416 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV048556963 | ||
003 | DE-604 | ||
005 | 20230106 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 221111s2022 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.14279/depositonce-16416 |2 doi | |
035 | |a (OCoLC)1357530203 | ||
035 | |a (DE-599)BVBBV048556963 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-83 | ||
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
100 | 1 | |a Jamshidi Idaji, Mina |e Verfasser |0 (DE-588)1272554465 |4 aut | |
245 | 1 | 0 | |a New machine learning methods for modeling nonlinear interactions in neural data : towards separation and detection of genuine cross-frequency synchronized sources |
264 | 1 | |a Berlin |c 2022 | |
300 | |a 1 Online-Ressource (118 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
502 | |b Dissertation |c Technische Universität Berlin |d 2022 | ||
650 | 0 | 7 | |a Signaltrennung |0 (DE-588)4181278-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nervennetz |0 (DE-588)4041638-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Encephalographie |0 (DE-588)4297453-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Encephalographie |0 (DE-588)4297453-7 |D s |
689 | 0 | 1 | |a Nervennetz |0 (DE-588)4041638-0 |D s |
689 | 0 | 2 | |a Signaltrennung |0 (DE-588)4181278-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o 10.14279/depositonce-16416 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |w (DE-604)BV048553346 |
856 | 4 | 0 | |u https://doi.org/10.14279/depositonce-16416 |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033933228 |
Datensatz im Suchindex
_version_ | 1804184567874060288 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Jamshidi Idaji, Mina |
author_GND | (DE-588)1272554465 |
author_facet | Jamshidi Idaji, Mina |
author_role | aut |
author_sort | Jamshidi Idaji, Mina |
author_variant | i m j im imj |
building | Verbundindex |
bvnumber | BV048556963 |
classification_rvk | ST 301 |
collection | ebook |
ctrlnum | (OCoLC)1357530203 (DE-599)BVBBV048556963 |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.14279/depositonce-16416 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01726nmm a2200433 c 4500</leader><controlfield tag="001">BV048556963</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230106 </controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">221111s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.14279/depositonce-16416</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1357530203</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048556963</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jamshidi Idaji, Mina</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1272554465</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">New machine learning methods for modeling nonlinear interactions in neural data : towards separation and detection of genuine cross-frequency synchronized sources</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (118 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Technische Universität Berlin</subfield><subfield code="d">2022</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Signaltrennung</subfield><subfield code="0">(DE-588)4181278-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nervennetz</subfield><subfield code="0">(DE-588)4041638-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Encephalographie</subfield><subfield code="0">(DE-588)4297453-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Encephalographie</subfield><subfield code="0">(DE-588)4297453-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nervennetz</subfield><subfield code="0">(DE-588)4041638-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Signaltrennung</subfield><subfield code="0">(DE-588)4181278-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">10.14279/depositonce-16416</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="w">(DE-604)BV048553346</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.14279/depositonce-16416</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033933228</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV048556963 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:58:52Z |
indexdate | 2024-07-10T09:41:24Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033933228 |
oclc_num | 1357530203 |
open_access_boolean | 1 |
owner | DE-83 |
owner_facet | DE-83 |
physical | 1 Online-Ressource (118 Seiten) Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
record_format | marc |
spelling | Jamshidi Idaji, Mina Verfasser (DE-588)1272554465 aut New machine learning methods for modeling nonlinear interactions in neural data : towards separation and detection of genuine cross-frequency synchronized sources Berlin 2022 1 Online-Ressource (118 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Dissertation Technische Universität Berlin 2022 Signaltrennung (DE-588)4181278-5 gnd rswk-swf Nervennetz (DE-588)4041638-0 gnd rswk-swf Encephalographie (DE-588)4297453-7 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Encephalographie (DE-588)4297453-7 s Nervennetz (DE-588)4041638-0 s Signaltrennung (DE-588)4181278-5 s DE-604 Erscheint auch als Online-Ausgabe 10.14279/depositonce-16416 Erscheint auch als Druck-Ausgabe (DE-604)BV048553346 https://doi.org/10.14279/depositonce-16416 Resolving-System kostenfrei Volltext |
spellingShingle | Jamshidi Idaji, Mina New machine learning methods for modeling nonlinear interactions in neural data : towards separation and detection of genuine cross-frequency synchronized sources Signaltrennung (DE-588)4181278-5 gnd Nervennetz (DE-588)4041638-0 gnd Encephalographie (DE-588)4297453-7 gnd |
subject_GND | (DE-588)4181278-5 (DE-588)4041638-0 (DE-588)4297453-7 (DE-588)4113937-9 |
title | New machine learning methods for modeling nonlinear interactions in neural data : towards separation and detection of genuine cross-frequency synchronized sources |
title_auth | New machine learning methods for modeling nonlinear interactions in neural data : towards separation and detection of genuine cross-frequency synchronized sources |
title_exact_search | New machine learning methods for modeling nonlinear interactions in neural data : towards separation and detection of genuine cross-frequency synchronized sources |
title_exact_search_txtP | New machine learning methods for modeling nonlinear interactions in neural data : towards separation and detection of genuine cross-frequency synchronized sources |
title_full | New machine learning methods for modeling nonlinear interactions in neural data : towards separation and detection of genuine cross-frequency synchronized sources |
title_fullStr | New machine learning methods for modeling nonlinear interactions in neural data : towards separation and detection of genuine cross-frequency synchronized sources |
title_full_unstemmed | New machine learning methods for modeling nonlinear interactions in neural data : towards separation and detection of genuine cross-frequency synchronized sources |
title_short | New machine learning methods for modeling nonlinear interactions in neural data : towards separation and detection of genuine cross-frequency synchronized sources |
title_sort | new machine learning methods for modeling nonlinear interactions in neural data towards separation and detection of genuine cross frequency synchronized sources |
topic | Signaltrennung (DE-588)4181278-5 gnd Nervennetz (DE-588)4041638-0 gnd Encephalographie (DE-588)4297453-7 gnd |
topic_facet | Signaltrennung Nervennetz Encephalographie Hochschulschrift |
url | https://doi.org/10.14279/depositonce-16416 |
work_keys_str_mv | AT jamshidiidajimina newmachinelearningmethodsformodelingnonlinearinteractionsinneuraldatatowardsseparationanddetectionofgenuinecrossfrequencysynchronizedsources |