Foundations of computational imaging: a model-based approach

Probability, estimation, and random processes -- Causal Gaussian models -- Non-causal Gaussian models -- Map estimation with Gaussian priors -- Non-Gaussian MRF models -- Map estimation with non-Gaussian priors -- Surrogate functions and majorization -- Constrained optimization and proximal methods...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bouman, Charles Addison (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Philadelphia SIAM, Society for Industrial and Applied Mathematics [2022]
Schriftenreihe:Other Titles in Applied Mathematics [180]
Schlagworte:
Online-Zugang:DE-91
DE-20
DE-706
DE-29
URL des Erstveröffentlichers
Zusammenfassung:Probability, estimation, and random processes -- Causal Gaussian models -- Non-causal Gaussian models -- Map estimation with Gaussian priors -- Non-Gaussian MRF models -- Map estimation with non-Gaussian priors -- Surrogate functions and majorization -- Constrained optimization and proximal methods -- Plug-and-play and advanced priors -- Model parameter estimation -- The expectation-maximization (EM) algorithm -- Markov chains and hidden Markov models -- General MRF models -- Stochastic simulation -- Bayesian segmentation -- Poisson data models.
This book provides a foundation for a collection of theoretical material that can serve as a common language for both researchers and practitioners of Computational Imaging.
Beschreibung:Includes bibliographical references and index
Beschreibung:1 Online-Ressource (xi, 337 Seiten) Illustrationen, Diagramme
ISBN:9781611977134
DOI:10.1137/1.9781611977134

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen