Artificial intelligence, its diffusion and uses in manufacturing:
Using artificial intelligence (AI) and other digital technologies in manufacturing, and other areas of production, is essential for raising labour productivity growth in OECD countries. AI can increase productivity in manufacturing in many ways, from reducing machine downtime to managing supply-chai...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Paris
OECD Publishing
2021
|
Schriftenreihe: | Going Digital Toolkit Notes
no.12 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | Using artificial intelligence (AI) and other digital technologies in manufacturing, and other areas of production, is essential for raising labour productivity growth in OECD countries. AI can increase productivity in manufacturing in many ways, from reducing machine downtime to managing supply-chains. However, even in the most advanced economies, the use of AI in manufacturing is limited. This Going Digital Toolkit note discusses the challenges faced by manufacturers in adopting AI and what these imply for the design of policies, including for: skills; institutions for technology diffusion; connectivity; research and manufacturing linkages; computing infrastructure; and, programme evaluation. The Annex provides examples of policy initiatives in a variety of countries |
Beschreibung: | 1 Online-Ressource (33 Seiten) |
DOI: | 10.1787/249e2003-en |
Internformat
MARC
LEADER | 00000nam a22000001cb4500 | ||
---|---|---|---|
001 | BV048539747 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 221102s2021 xx o|||| 00||| eng d | ||
024 | 7 | |a 10.1787/249e2003-en |2 doi | |
035 | |a (ZDB-13-SOC)082007284 | ||
035 | |a (OCoLC)1350775558 | ||
035 | |a (DE-599)KEP082007284 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-521 |a DE-1028 |a DE-573 |a DE-92 |a DE-898 |a DE-1049 |a DE-861 |a DE-188 |a DE-91 |a DE-384 |a DE-473 |a DE-355 |a DE-20 |a DE-824 |a DE-29 |a DE-739 |a DE-19 | ||
100 | 1 | |a Nolan, Alistair |e Verfasser |4 aut | |
245 | 1 | 0 | |a Artificial intelligence, its diffusion and uses in manufacturing |c Alistair, Nolan |
264 | 1 | |a Paris |b OECD Publishing |c 2021 | |
300 | |a 1 Online-Ressource (33 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Going Digital Toolkit Notes |v no.12 | |
520 | 3 | |a Using artificial intelligence (AI) and other digital technologies in manufacturing, and other areas of production, is essential for raising labour productivity growth in OECD countries. AI can increase productivity in manufacturing in many ways, from reducing machine downtime to managing supply-chains. However, even in the most advanced economies, the use of AI in manufacturing is limited. This Going Digital Toolkit note discusses the challenges faced by manufacturers in adopting AI and what these imply for the design of policies, including for: skills; institutions for technology diffusion; connectivity; research and manufacturing linkages; computing infrastructure; and, programme evaluation. The Annex provides examples of policy initiatives in a variety of countries | |
650 | 4 | |a Science and Technology | |
650 | 4 | |a Industry and Services | |
856 | 4 | 0 | |u https://doi.org/10.1787/249e2003-en |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-13-SOC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033916293 |
Datensatz im Suchindex
_version_ | 1822611024861200384 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Nolan, Alistair |
author_facet | Nolan, Alistair |
author_role | aut |
author_sort | Nolan, Alistair |
author_variant | a n an |
building | Verbundindex |
bvnumber | BV048539747 |
collection | ZDB-13-SOC |
ctrlnum | (ZDB-13-SOC)082007284 (OCoLC)1350775558 (DE-599)KEP082007284 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/249e2003-en |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001cb4500</leader><controlfield tag="001">BV048539747</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">221102s2021 xx o|||| 00||| eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/249e2003-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-13-SOC)082007284</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1350775558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP082007284</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-521</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nolan, Alistair</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial intelligence, its diffusion and uses in manufacturing</subfield><subfield code="c">Alistair, Nolan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (33 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Going Digital Toolkit Notes</subfield><subfield code="v">no.12</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Using artificial intelligence (AI) and other digital technologies in manufacturing, and other areas of production, is essential for raising labour productivity growth in OECD countries. AI can increase productivity in manufacturing in many ways, from reducing machine downtime to managing supply-chains. However, even in the most advanced economies, the use of AI in manufacturing is limited. This Going Digital Toolkit note discusses the challenges faced by manufacturers in adopting AI and what these imply for the design of policies, including for: skills; institutions for technology diffusion; connectivity; research and manufacturing linkages; computing infrastructure; and, programme evaluation. The Annex provides examples of policy initiatives in a variety of countries</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science and Technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industry and Services</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1787/249e2003-en</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033916293</subfield></datafield></record></collection> |
id | DE-604.BV048539747 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:54:48Z |
indexdate | 2025-01-29T19:02:03Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033916293 |
oclc_num | 1350775558 |
open_access_boolean | 1 |
owner | DE-521 DE-1028 DE-573 DE-92 DE-898 DE-BY-UBR DE-1049 DE-861 DE-188 DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-20 DE-824 DE-29 DE-739 DE-19 DE-BY-UBM |
owner_facet | DE-521 DE-1028 DE-573 DE-92 DE-898 DE-BY-UBR DE-1049 DE-861 DE-188 DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-355 DE-BY-UBR DE-20 DE-824 DE-29 DE-739 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (33 Seiten) |
psigel | ZDB-13-SOC |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | OECD Publishing |
record_format | marc |
series2 | Going Digital Toolkit Notes |
spelling | Nolan, Alistair Verfasser aut Artificial intelligence, its diffusion and uses in manufacturing Alistair, Nolan Paris OECD Publishing 2021 1 Online-Ressource (33 Seiten) txt rdacontent c rdamedia cr rdacarrier Going Digital Toolkit Notes no.12 Using artificial intelligence (AI) and other digital technologies in manufacturing, and other areas of production, is essential for raising labour productivity growth in OECD countries. AI can increase productivity in manufacturing in many ways, from reducing machine downtime to managing supply-chains. However, even in the most advanced economies, the use of AI in manufacturing is limited. This Going Digital Toolkit note discusses the challenges faced by manufacturers in adopting AI and what these imply for the design of policies, including for: skills; institutions for technology diffusion; connectivity; research and manufacturing linkages; computing infrastructure; and, programme evaluation. The Annex provides examples of policy initiatives in a variety of countries Science and Technology Industry and Services https://doi.org/10.1787/249e2003-en Verlag kostenfrei Volltext |
spellingShingle | Nolan, Alistair Artificial intelligence, its diffusion and uses in manufacturing Science and Technology Industry and Services |
title | Artificial intelligence, its diffusion and uses in manufacturing |
title_auth | Artificial intelligence, its diffusion and uses in manufacturing |
title_exact_search | Artificial intelligence, its diffusion and uses in manufacturing |
title_exact_search_txtP | Artificial intelligence, its diffusion and uses in manufacturing |
title_full | Artificial intelligence, its diffusion and uses in manufacturing Alistair, Nolan |
title_fullStr | Artificial intelligence, its diffusion and uses in manufacturing Alistair, Nolan |
title_full_unstemmed | Artificial intelligence, its diffusion and uses in manufacturing Alistair, Nolan |
title_short | Artificial intelligence, its diffusion and uses in manufacturing |
title_sort | artificial intelligence its diffusion and uses in manufacturing |
topic | Science and Technology Industry and Services |
topic_facet | Science and Technology Industry and Services |
url | https://doi.org/10.1787/249e2003-en |
work_keys_str_mv | AT nolanalistair artificialintelligenceitsdiffusionandusesinmanufacturing |