Dragonflies and damselflies: model organisms for ecological and evolutionary research
Gespeichert in:
Weitere Verfasser: | , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Oxford
Oxford University Press
[2023]
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xxiv, 459 Seiten Illustrationen, Diagramme, Karten 25 cm |
ISBN: | 9780192898623 0192898620 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV048535197 | ||
003 | DE-604 | ||
005 | 20221207 | ||
007 | t | ||
008 | 221028s2023 a||| b||| 00||| eng d | ||
020 | |a 9780192898623 |9 978-0-19-289862-3 | ||
020 | |a 0192898620 |9 0-19-289862-0 | ||
035 | |a (OCoLC)1354312336 | ||
035 | |a (DE-599)BVBBV048535197 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 | ||
084 | |a WQ 3750 |0 (DE-625)151389: |2 rvk | ||
245 | 1 | 0 | |a Dragonflies and damselflies |b model organisms for ecological and evolutionary research |c edited by Alex Córdoba-Aguilar (Researcher, Universidad Nacional Autónoma de México), Christopher D. Beatty (Visiting Scholar, Program for Conservation Genomics, Stanford University), Jason T. Bried (Research Scientist, Illinois Natural History Survey, Prairie Research Insitute, University of Illinois at Urbana-Champaign) |
250 | |a Second edition | ||
264 | 1 | |a Oxford |b Oxford University Press |c [2023] | |
300 | |a xxiv, 459 Seiten |b Illustrationen, Diagramme, Karten |c 25 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Libellen |0 (DE-588)4035570-6 |2 gnd |9 rswk-swf |
653 | 0 | |a Dragonflies | |
653 | 0 | |a Damselflies | |
653 | 0 | |a Insects / Evolution | |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Libellen |0 (DE-588)4035570-6 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Córdoba-Aguilar, Alex |0 (DE-588)1165261022 |4 edt | |
700 | 1 | |a Beatty, Christopher D. |4 edt | |
700 | 1 | |a Bried, Jason T. |4 edt | |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033911827&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033911827 |
Datensatz im Suchindex
_version_ | 1807955792257613824 |
---|---|
adam_text |
Contents xxiii Foreword 1 Introduction to Dragonflies and Damselflies, Second Edition 1 Alex Cordoba-Aguilar, Christopher D. Beatty, and Jason T. Bried SECTION 1 5 GENOMICS Edited by Alex Cordoba-Aguilar 2 Genomic insights into micro- and macro-evolutionary processes in Odonata 7 Maren Wellenreuther, Rachael Y. Dudaniec, and Lesley T. Lancaster 3 7 8 8 9 11 11 12 13 13 2.1 Introduction 2.2 Genomic insights into population processes 2.2.1 Dispersal and connectivity 2.2.2 Range shifts and other spatial processes 2.3 Adaptation and adaptive trait evolution 2.3.1 Environmental adaptation 2.3.2 Morphological adaptation 2.3.3 Life stage-specific adaptation 2.4 Genomic variation associated with hybridization and speciation 2.4.1 Insights from genome assemblies into species and order-specific functional traits 2.5 Conclusions and future directions References 14 15 16 Transcriptomic insights into Odonata ecology and evolution 21 Seth Μ. Bybee, Ryo Futahashi, Julien P. Renoult, Camilla Sharkey, Sabrina Simon, Anton Suvorov, and Maren Wellenreuther 3.1 Introduction 3.2 Color vision 3.3 Transcriptomic insight into the eco-evolutionary role of color variation 3.3.1 Ecological significance of color variation within and between species 3.3.2 Evolution of color phenotypes 3.3.3 Pigments 3.3.4 Structural colors 3.3.5 Genes involved in body colorformation 21 23 25 25 25 26 26 27
xii CONTENTS 3.4 Embryogenesis 3.4.1 Gene expression during embryogenesis 3.5 Phylo-transcriptomics 3.6 Future directions 3.6.1 Color vision 3.6.2 Color 3.6.3 Embryogenesis 3.6.4 Phylogenomics 3.7 Conclusion Acknowledgments References SECTION 2 ORGANISMAL STUDIES 27 28 28 29 29 30 30 31 31 31 31 37 Edited by Alex Córdoba-Aguilar 4 Functional morphology in Odonata 39 Sebastian Büsse 4.1 Introduction 4.2 Head 4.3 Head-thorax articulation 4.4 Thorax 4.5 Wings 4.6 Legs 4.7 Abdomen Method boxes References 5 The biomechanics of Odonata flight: structure, motion, and function 39 41 44 44 46 47 47 50 52 57 Richard J. Bomphrey and Simon Μ. Walker Flight mechanics Muscle activation Wing structure Flapping wing aerodynamics 5.4.1 Leading-edge vortex 5.4.2 Stroke plane 5.4.3 Planform 5.5 Aerodynamic interactions 5.5.1 Wing phasing 5.6 Flight control and sensing 5.6.1 Passive control 5.6.2 Active control 5.6.3 Predicting sensory inputs 5.7 Concluding remarks Acknowledgments References 5.1 5.2 5.3 5.4 57 58 60 62 62 63 63 64 64 66 66 66 67 68 68 68
CONTENTS 6 Odonata immunity, pathogens, and parasites xiii 73 Adam Z. Hasik, Jaakko J. Ilvonen, Adam Μ. Siepielski, and Rosalind L. Murray 7 6.1 Introduction 6.2 Parasites 6.2.1 Viruses 6.2.2 Bacteria 6.2.3 Gregarines 6.2.4 Trematodes 6.2.5 Water mites 6.2.6 Parasitoids 6.2.7 Coinfection 6.3 Odonate immunity 6.3.1 Overview of insect immunity 6.3.2 Components of odonate immunity 6.4 Ecology and evolution of immunity and parasites 6.4.1 PO and food webs 6.4.2 Metacommunity structure 6.4.3 Coevolution 6.5 Future research directions 6.5.1 Genetics 6.5.2 Microbiome 6.5.3 Climate change 6.6 Conclusions Acknowledgments References 73 74 74 74 74 74 75 75 76 76 76 76 77 77 78 79 79 79 79 80 80 80 80 Odonata perception is more than vision 85 Manuela Rebora, Gianandrea Salerno, and Silvana Piersanti 7.1 Introduction 7.2 Adult 7.2.1 Antennae 7.2.2 Mouthparts and gustatory sensilla 7.2.3 The ovipositor sensilla: sensing the plant taste and stiffness 7.3 Nymph 7.3.1 Antennae 7.4 Conclusions and future perspectives References 8 Thermoregulation in Odonata 85 85 85 90 92 92 92 95 96 101 Ulises Castillo-Perez, Michael L. May, and Alex Cordoba-Aguilar 8.1 Introduction 8.2 Mechanisms of thermoregulation 8.2.1 Ectothermy and behavior 8.2.2 Ectothermy and color 8.2.3 Endothermy 8.3 Global change and thermal limits 8.4 Global change and body coloration 101 101 102 103 Ю5 107 107
xiv CONTENTS 8.5 Odonate resilience: a link to thermoregulation? 8.6 Linking thermoregulation mechanisms to global temperature changes 8.7 Some topics for future thermoregulation research 8.7.1 Genetics and physiology of thermoregulation 8.7.2 Mechanisms of thermoregulation 8.7.3 Trade-offs between thermoregulation and other functions 8.7.4 Human awareness via insect thermoregulation risk under climate change Acknowledgments References SECTION 3 107 108 108 108 108 109 109 109 109 113 POPULATION ECOLOGY Edited by Christopher D. Beatty 9 Genetic structure, cryptic species, and hybridization: causes and evolutionary consequences in Odonata 115 Rosa Ana Sánchez-Guillén, Yesenia Μ. Vega-Sánchez, and Melissa Sánchez-Herrera 10 9.1 Introduction 9.2 Gene flow within species: population genetic structure in odonates 9.3 Cryptic species in odonates 9.4 Gene flow between species: hybridization in odonates 9.5 Conclusions and research directions Acknowledgments References 115 116 118 119 124 125 125 Odonata survival: insights from mark-recapture experiments 129 lago Sanmartín-Villar and Adolfo Cordero-Rivera 11 10.1 Introduction 10.2 The effect of marking 10.3 A review of the literature using marking methods with odonates 10.4 The effect of sex and age on survival and recapture rates 10.5 The effect of female color polymorphism 10.6 Individual and environmental covariates 10.7 Conclusions and further research Acknowledgments References 129 130 130 132 134 135 135 137 137 Migration in Anisoptera 141 Michael L. May and John H. Matthews 11.1 Introduction 11.2 Migratory case studies in
odonates 11.2.1 Anaxjunius 11.2.2 Pantalaflavescens 11.3 Migration and weather 11.4 Migration and reproduction 11.5 Population studies in migrating dragonflies 141 142 142 144 146 146 147
CONTENTS 12 xv 11.6 Migrants vs. residents—how might they evolve? 11.7 Future directions Acknowledgments References 149 150 150 151 Dispersal and metapopulation ecology in Odonata 155 Shannon J. McCauley, Celina B. Baines, and Karen E. Mabry Dispersal biology in ecology and evolution Dispersal biology in Odonata Methods for studying dispersal in odonates Dispersal and population structure 12.4.1 Context- and phenotype-dependent dispersal 12.4.2 Spatially structured populations 12.4.3 Dispersal and species ranges 12.5 Dispersal and colonization in the Anthropocene 12.5.1 Effects of human alteration of matrix environments on dispersal and habitat colonization 161 12.5.2 Colonization and ecological traps 12.6 Future research directions in the study of dispersal in Odonata 12.6.1 Dispersal in the context of anthropogenic change 12.6.2 Rapidly advancing methods 12.6.3 Research across a greater diversity of the world's landscapes Acknowledgments References 162 162 162 162 162 162 163 Biogeographical ecology in Odonata 167 12.1 12.2 12.3 12.4 13 155 155 156 158 158 159 159 161 Christopher D. Beatty, Fernanda Alves-Martins, Brenda D. Smith, and Julie Verheyen 13.1 Introduction to biogeography 13.1.1 Biogeographical concepts through history 13.1.2 Historical and ecological biogeography 13.2 Biogeographic realms and odonate species distributions 13.2.1 Nearctic 13.2.2 Palearctic 13.2.3 Indo-Malayan 13.2.4 Australasia 13.2.5 Oceanic-Pacific 13.2.6 Afrotropics 13.2.7 Neotropics 13.3 Factors influencing odonate distributions 13.3.1 Climatic factors 13.3.2 Precipitation 13.3.3
Temperature 13.3.4 Tracking suitable climates: differences in temperature causes different species compositions 13.3.5 Geographic barriers 13.3.6 Mountainsandplains 13.3.7 River basins 13.3.8 Glaciation patterns 13.4 Considerations of scale in odonate biogeographical analysis 167 167 168 168 169 169 169 170 170 170 170 170 170 171 171 171 171 172 172 172 172
xvi CONTENTS 13.5 Life history evolution in odonate biogeography 13.5.1 Latitudinal differences in voltinism 13.5.2 Latitudinal patterns in thermal adaptation and space-for-time substitution studies 13.6 Conservation biogeography 13.7 Future directions Acknowledgments References SECTION 4 COMMUNITY ECOLOGY 174 174 174 179 181 181 181 187 Edited by Jason T. Bried 14 Evolutionary community ecology of Odonata 189 Adam Μ. Siepieiski, Miguel Gómez-Llano, and Adam Z. Hasik 15 14.1 Introduction 14.2 Interactions in odonates 14.2.1 Predation—odonates as prey 14.2.2 Predation—odonates as predators 14.2.3 Competition 14.2.4 Parasitism 14.2.5 Reproductive interactions 14.3 Natural and sexual selection in communities 14.3.1 Selection in larvae 14.3.2 Selection in adults 14.4 Eco-evolutionary effects in communities 14.4.1 Adaptation to biotic interactions 14.4.2 Adaptation during range expansion 14.5 Future directions and conclusion Acknowledgments References 189 190 190 191 192 192 192 193 193 194 195 195 197 197 198 198 Ecological differentiation, interference, and coexistence in Odonata 203 Gregory F. Grether, Adam Μ. Siepieiski, and Miguel Gómez-Llano 15.1 Introduction 15.2 Coexistence theory 15.2.1 Local coexistence 15.2.2 Regional (non-local) coexistence 15.2.3 Interspecific interference and coexistence 15.2.4 Intraspecific interference and coexistence 15.3 Empirical studies on coexistence and competition in Odonata assemblages 15.3.1 Local coexistence 15.3.2 Regional coexistence 15.3.3 Exploitative competition among larvae 15.3.4 Interference competition among larvae 15.3.5
Interspecific aggressive and reproductive interference at the adult stage 203 204 204 206 206 207 207 207 210 210 211 212
CONTENTS 16 xvii 15.3.6 Intraspecific interference at the adult stage 15.4 Conclusions and recommendations Acknowledgments References 213 214 214 214 Odonata trophic ecology: from hunting behavior to cross-ecosystem impact 219 Arnaud Sentis, Kari Kauniste, Lenin Chari, André Morrill, Olga Popova, Justin Pomeranz, David Boukal, Nedim Tüzűn, and Robby Stoks 17 16.1 Introduction 16.2 Background to odonate trophic ecology 16.2.1 Trophic role of odonates in aquatic food webs 16.2.2 Odonate hunting behavior 16.2.3 Visual, chemical, and olfactory cues 16.3 Shifts and variation in odonate trophic relations 16.3.1 Ontogenetic scaling and trophic niche shifts 16.3.2 Sex differences in adult diet 16.3.3 Carryover effects of larval diet on adult phenotypic traits and fitness 16.3.4 Carryover effects of predation risk on adult traits 16.3.5 Metamorphosis and shifts from aquatic to terrestrial diets 16.4 Trophic and non-trophic interactions in food webs 16.4.1 Cannibalism and intraguild predation (IGP) 16.4.2 Non-trophic interactions 16.4.3 Trophic cascades and cross-ecosystem fluxes 16.5 Importance of abiotic factors in odonate trophic ecology 16.6 Eco-evolutionary dynamics of trophic interactions 16.7 Conclusions and research directions Acknowledgments References 224 225 225 226 226 226 226 227 228 229 229 229 Metacommunity concepts, approaches, and directions with Odonata 233 219 220 220 221 223 223 223 223 Jason T. Bried, Fernanda Alves-Martins, Leandro S. Brasil, and Shannon J. McCauley 17.1 17.2 17.3 17.4 Introduction to metacommunity thinking Why odonates? Some current themes in
odonate metacommunity ecology Empirical approaches to metacommunities 17.4.1 Experimental approaches 17.4.2 Observational approaches 17.4.2.1 Disentangling assembly patterns 17.4.2.2 Disentangling assembly processes 17.5 Future directions 17.5.1 Applied metacommunity thinking 17.5.1.1 Mass effects and bioassessment 17.5.1.2 Mass effects and spatial prioritization 17.5.1.3 Dispersal limitation and ecological restoration 17.5.2 Importance of historical factors 17.5.3 Toward a more high-tech and integrative metacommunity ecology Acknowledgments References 233 235 235 237 237 239 239 240 241 241 241 242 242 242 243 243 243
xviii CONTENTS 18 Odonata assemblages in human-modified landscapes 247 Brenda D. Smith, Giovanna Villalobos-Jimenez, Mary Ann C. Perron, Göran Sahlén, Giacomo Assandri, Marina Vilenica, Lenize Batista Calvāo, Leandro Juen, Francesco Cerini, and Jason T. Bried 18.1 Introduction 18.2 General challenges and methods 18.3 Logging, agriculture, and non-urban secondary habitats 18.3.1 Logging 18.3.2 Agriculture 18.3.3 Non-urban secondary habitats 18.4 Urban landscapes 18.4.1 Water in urban landscapes 18.4.2 Urban heat island (UHI) effect 18.4.3 Urban ecological traps 18.5 Challenges and future directions Acknowledgments References SECTION 5 247 250 250 250 251 252 252 253 255 255 256 256 256 DIVERSITY, SYSTEMATICS, AND BIOINFORMATICS 261 Edited by Christopher D. Beatty 19 263 Species identification and description Ângelo Parise Pinto, Cornelio Andrés Bota-Sierra, and Milen Marinov 19.1 Introduction 19.2 Species identification in Odonata 19.3 General topics in the taxonomic literature and their implication for Odonata 19.3.1 Taxa as concepts 19.3.1.1 Species 19.3.1.2 Subspecies 19.3.1.3 Taxonomic ranks below subspecies in Odonata 19.4 When is a species "new"? 19.4.1 Species delimitation in Odonata 19.4.2 Patterns of description in Odonata 19.5 Species description 19.5.1 Details included in the description 19.5.2 Naming taxa (assigning a nomen to a concept) 19.5.3 Role of the name-bearing specimens 19.6 Conclusions and suggestions for students in Odonata taxonomy and nomenclature Acknowledgments References 20 The Odonatoptera: a clade that contains 99% of Odonata fossil diversity
263 264 265 266 267 267 268 269 269 272 272 272 273 273 274 274 275 279 André Nel and Bertrand Piney 20.1 Definition of the Odonatoptera as a superorder 20.2 Major subdivisions of the Odonatoptera 279 280
CONTENTS 21 xix 20.3 What are the fossil remains of Odonatoptera? 20.4 A diversity of wing venations: a diversity of flight patterns? 20.5 Paleoecology and diversity changes since the Carboniferous 20.6 Conclusion Acknowledgments References 286 287 288 290 290 290 Odonata systematics 295 Manpreet K. Kohli and Jessica L. Ware 21.1 Introduction 21.2 Odonata systematics through time 21.2.1 Traditional systematics throughmorphology 21.2.2 Molecular renaissance 21.3 The modern Odonata tree of life 21.3.1 Zygoptera 21.3.2 Anisozygoptera 21.3.3 Anisoptera 21.3.4 Why are some nodes difficult to resolve? 21.4 Beyond systematics: phylogenies as a tool for studying Odonata evolution 21.4.1 Divergence time estimation and diversification analysis 21.4.2 Biogeographical analysis 21.4.3 Phylogenies for studying trait evolution 21.5 What systematics cannot do 21.6 Future of Odonata systematics Acknowledgments References 22 Phylogeography: a spatiotemporal perspective on Odonata distributions 295 296 296 297 298 298 299 300 301 302 302 302 303 303 303 304 304 309 Melissa Sanchez-Herrera, Yesenia Μ. Vega-Sánchez, Christopher D. Beatty, and Manpreet Kohli 23 22.1 Introduction 22.2 A global perspective: historical biogeography 22.3 Phylogeographic patterns within biogeographic realms 22.3.1 Holarctic 22.3.2 Neotropical 22.3.3 Afrotropical 22.3.4 The Indo-Australian Archipelago 22.3.5 Oceanic-Pacific 22.4 Current limitations and future perspectives Acknowledgments References 309 310 313 313 314 317 318 319 321 321 321 Odonata collections and databases 327 John C. Abbott and Emily L. Sandali
23.1 Introduction 23.2 The foundational odonate taxonomists 327 328
xx CONTENTS 23.2.1 Carolus (Carl) Linnaeus (1707-1778) 23.2.2 Jules Pierre Rambur (1801-1870) 23.2.3 Michael Edmond de Sélys Longchamps (1813-1900) 23.2.4 Hermann August Hagen (1817-1893) 23.2.5 Friedrich Ris (1867-1931) 23.2.6 Philip Powell Calvert (1871-1961) 23.2.7 Frederic Charles Fraser (1880-1963) 23.2.8 Maurits Anne Lieftinck (1904-1985) 23.3 Physical collections 23.4 Extending physical collections 23.4.1 Community science 23.4.2 Digital collections 23.5 Odonate databases and Big Data 23.5.1 Specimen digitization 23.5.2 Spatial data 23.5.3 Taxonomic data 23.5.4 Genetic/phylogenetic data 23.5.5 Trait data 23.6 Conclusions Acknowledgments References SECTION б 328 328 328 329 330 330 330 330 330 331 331 333 334 334 334 335 336 336 336 337 337 APPLIED ECOLOGY AND CONSERVATION 341 Edited by Jason T. Bried 24 343 Linking traits to extinction risk in Odonata Maya Rocha-Ortega, Rassim Khelifa, Emily L. Sandali, Charl Deacon, Xavier Sánchez-Rivero, Stefan Pinkert, and Michael A. Patten 24.1 Introduction 24.2 General considerations for studying trait-based Odonata extinction risk 24.2.1 Commonly studied odonate traits 24.3 An ecological and evolutionary perspective on trait variation 24.3.1 A functional ecological perspective 24.3.2 A functional evolutionary perspective 24.4 Community resilience and functional redundancy 24.5 Traits as predictors and proxies of extinction risk 24.6 Conclusions and future directions Acknowledgments References 25 Odonata as surrogates of biodiversity 343 344 345 348 348 348 349 350 351 353 353 359 Gabriella J. Kietzka, Charl Deacon, and Michael
A. Patten 25.1 Introduction 25.1.1 The history and terminology surrounding surrogacy 25.1.2 Chapter outline 25.2 Characteristics of good biodiversity surrogates 25.3 Dragonflies as biodiversity surrogates 359 359 361 361 362
CONTENTS 25.3.1 Importance of life stage 25.3.2 Single-taxon surrogacy and self-surrogacy 25.3.3 Multi-taxa surrogacy approaches and congruence with co-occurring taxa 25.4 Challenges and opportunities 25.4.1 Sampling methods 25.4.2 Quantifying surrogate success 25.4.3 Managing the limitations of surrogacy 25.5 Conclusion Acknowledgments References 26 xxi 362 364 365 366 366 366 366 367 367 367 Odonata as indicators of pollution, habitat quality, and landscape disturbance 371 Hana Šigutová, Aleš Dolný, Michael J. Samways, Sönke Hardersen, José Max В. Oliveira-Junior, Leandro Juen, Khuong Van Dinh, and Jason T. Bried 26.1 Introduction 26.2 Sampling considerations 26.2.1 Nymphs, exuviae, or adults? 26.2.2 Importance of long-term monitoring 26.3 Odonata as environmental health indicators 26.3.1 Pollution bioassessment 26.3.1.1 Ecotoxicology 26.3.1.2 Bioaccumulation in sentinel organisms 26.3.1.3 Pollution biotic indices 26.3.2 Habitat quality assessment 26.3.2.1 Dragonfly Biotic Index (DBI) 26.3.2.2 Lotic habitat quality 26.3.2.3 Assessing tropical forest habitat degradation via coarse taxonomic ratios 26.3.3 Landscape disturbance assessment 26.4 Toward large-scale environmental health assessments 26.4.1 Sensitivity traits 26.4.2 Citizen science Acknowledgments References 27 371 372 372 372 373 373 373 374 374 376 376 376 377 378 379 379 380 380 381 Odonata as focal taxa for biological responses to climatechange 385 Stefan Pinkert, Viola Clausnitzer, Daniel Acquah-Lamptey, Paulo De Marco, and Frank Johansson 27.1 27.2 27.3 27.4 27.5 General introduction and chapter outline
Climatic drivers of diversity patterns Biogeographical processes shaping diversity patterns Mechanisms underpinning species' responses to climate change Trait-based analysis of range shifts, population trends, and phenological changes 27.5.1 Range shifts 27.5.2 Population trends 27.5.3 Phenological changes 27.6 Climate change and competition 385 387 387 387 389 389 389 390 390
xxii CONTENTS 28 27.7 Climate change and habitat loss as threats to Odonata diversity 27.8 Modeling speciesdistributions and their dynamics 27.9 Conclusions Acknowledgments References 393 394 396 396 396 Odonata as focal taxa 401 for ecologicalrestoration Filip Harabiš, John P. Simaika, Aleš Dolný, Sarah H. Luke, Merja Elo, Jason T. Bried, and Michael J. Samways 28.1 Introduction 28.2 General principles and challenges of restoration practice 28.3 General considerations for restoring odonate populations and assemblages 28.4 Odonate-based habitat restoration 28.4.1 Lotic habitats 28.4.2 Lentic habitats 28.4.3 Mixed lentic and lotic habitats 28.5 Restoration progress and odonates as management indicators 28.5.1 Odonates as indicators of restoration progress 28.6 Restoration by translocation 28.7 Conclusions and directions Acknowledgments References 29 Bridging people and nature through Odonata 401 402 403 405 405 405 407 407 407 408 408 409 409 413 Amanda Dillon, John Simaika, Viola Clausnitzer, Ami Thompson, Erin White, Jenilee Montes-Fontalvo, Christine Goforth, and Rassim Khelifa 29.1 29.2 29.3 29.4 29.5 413 414 414 416 419 419 419 419 420 420 421 423 423 423 423 423 424 424 Glossary Subject Index 427 445 Introduction Odonata in ecotourism Odonata in childhood environmental education Defining Odonata species ranges using community science Odonata conservation listing 29.5.1 IUCN Red List of Threatened Species 29.5.2 Odonata and the Red List 29.5.2.1 Africa 29.5.2.2 Latin America 29.6 Territorial empowerment via Odonata 29.7 The EDI barrier to globalized odonatology 29.7.1
International collaborations 29.7.2 Reconsidering the publishing process 29.7.3 International research funding and surveys 29.7.4 Giving back 29.8 Conclusion Acknowledgments References |
adam_txt |
Contents xxiii Foreword 1 Introduction to Dragonflies and Damselflies, Second Edition 1 Alex Cordoba-Aguilar, Christopher D. Beatty, and Jason T. Bried SECTION 1 5 GENOMICS Edited by Alex Cordoba-Aguilar 2 Genomic insights into micro- and macro-evolutionary processes in Odonata 7 Maren Wellenreuther, Rachael Y. Dudaniec, and Lesley T. Lancaster 3 7 8 8 9 11 11 12 13 13 2.1 Introduction 2.2 Genomic insights into population processes 2.2.1 Dispersal and connectivity 2.2.2 Range shifts and other spatial processes 2.3 Adaptation and adaptive trait evolution 2.3.1 Environmental adaptation 2.3.2 Morphological adaptation 2.3.3 Life stage-specific adaptation 2.4 Genomic variation associated with hybridization and speciation 2.4.1 Insights from genome assemblies into species and order-specific functional traits 2.5 Conclusions and future directions References 14 15 16 Transcriptomic insights into Odonata ecology and evolution 21 Seth Μ. Bybee, Ryo Futahashi, Julien P. Renoult, Camilla Sharkey, Sabrina Simon, Anton Suvorov, and Maren Wellenreuther 3.1 Introduction 3.2 Color vision 3.3 Transcriptomic insight into the eco-evolutionary role of color variation 3.3.1 Ecological significance of color variation within and between species 3.3.2 Evolution of color phenotypes 3.3.3 Pigments 3.3.4 Structural colors 3.3.5 Genes involved in body colorformation 21 23 25 25 25 26 26 27
xii CONTENTS 3.4 Embryogenesis 3.4.1 Gene expression during embryogenesis 3.5 Phylo-transcriptomics 3.6 Future directions 3.6.1 Color vision 3.6.2 Color 3.6.3 Embryogenesis 3.6.4 Phylogenomics 3.7 Conclusion Acknowledgments References SECTION 2 ORGANISMAL STUDIES 27 28 28 29 29 30 30 31 31 31 31 37 Edited by Alex Córdoba-Aguilar 4 Functional morphology in Odonata 39 Sebastian Büsse 4.1 Introduction 4.2 Head 4.3 Head-thorax articulation 4.4 Thorax 4.5 Wings 4.6 Legs 4.7 Abdomen Method boxes References 5 The biomechanics of Odonata flight: structure, motion, and function 39 41 44 44 46 47 47 50 52 57 Richard J. Bomphrey and Simon Μ. Walker Flight mechanics Muscle activation Wing structure Flapping wing aerodynamics 5.4.1 Leading-edge vortex 5.4.2 Stroke plane 5.4.3 Planform 5.5 Aerodynamic interactions 5.5.1 Wing phasing 5.6 Flight control and sensing 5.6.1 Passive control 5.6.2 Active control 5.6.3 Predicting sensory inputs 5.7 Concluding remarks Acknowledgments References 5.1 5.2 5.3 5.4 57 58 60 62 62 63 63 64 64 66 66 66 67 68 68 68
CONTENTS 6 Odonata immunity, pathogens, and parasites xiii 73 Adam Z. Hasik, Jaakko J. Ilvonen, Adam Μ. Siepielski, and Rosalind L. Murray 7 6.1 Introduction 6.2 Parasites 6.2.1 Viruses 6.2.2 Bacteria 6.2.3 Gregarines 6.2.4 Trematodes 6.2.5 Water mites 6.2.6 Parasitoids 6.2.7 Coinfection 6.3 Odonate immunity 6.3.1 Overview of insect immunity 6.3.2 Components of odonate immunity 6.4 Ecology and evolution of immunity and parasites 6.4.1 PO and food webs 6.4.2 Metacommunity structure 6.4.3 Coevolution 6.5 Future research directions 6.5.1 Genetics 6.5.2 Microbiome 6.5.3 Climate change 6.6 Conclusions Acknowledgments References 73 74 74 74 74 74 75 75 76 76 76 76 77 77 78 79 79 79 79 80 80 80 80 Odonata perception is more than vision 85 Manuela Rebora, Gianandrea Salerno, and Silvana Piersanti 7.1 Introduction 7.2 Adult 7.2.1 Antennae 7.2.2 Mouthparts and gustatory sensilla 7.2.3 The ovipositor sensilla: sensing the plant taste and stiffness 7.3 Nymph 7.3.1 Antennae 7.4 Conclusions and future perspectives References 8 Thermoregulation in Odonata 85 85 85 90 92 92 92 95 96 101 Ulises Castillo-Perez, Michael L. May, and Alex Cordoba-Aguilar 8.1 Introduction 8.2 Mechanisms of thermoregulation 8.2.1 Ectothermy and behavior 8.2.2 Ectothermy and color 8.2.3 Endothermy 8.3 Global change and thermal limits 8.4 Global change and body coloration 101 101 102 103 Ю5 107 107
xiv CONTENTS 8.5 Odonate resilience: a link to thermoregulation? 8.6 Linking thermoregulation mechanisms to global temperature changes 8.7 Some topics for future thermoregulation research 8.7.1 Genetics and physiology of thermoregulation 8.7.2 Mechanisms of thermoregulation 8.7.3 Trade-offs between thermoregulation and other functions 8.7.4 Human awareness via insect thermoregulation risk under climate change Acknowledgments References SECTION 3 107 108 108 108 108 109 109 109 109 113 POPULATION ECOLOGY Edited by Christopher D. Beatty 9 Genetic structure, cryptic species, and hybridization: causes and evolutionary consequences in Odonata 115 Rosa Ana Sánchez-Guillén, Yesenia Μ. Vega-Sánchez, and Melissa Sánchez-Herrera 10 9.1 Introduction 9.2 Gene flow within species: population genetic structure in odonates 9.3 Cryptic species in odonates 9.4 Gene flow between species: hybridization in odonates 9.5 Conclusions and research directions Acknowledgments References 115 116 118 119 124 125 125 Odonata survival: insights from mark-recapture experiments 129 lago Sanmartín-Villar and Adolfo Cordero-Rivera 11 10.1 Introduction 10.2 The effect of marking 10.3 A review of the literature using marking methods with odonates 10.4 The effect of sex and age on survival and recapture rates 10.5 The effect of female color polymorphism 10.6 Individual and environmental covariates 10.7 Conclusions and further research Acknowledgments References 129 130 130 132 134 135 135 137 137 Migration in Anisoptera 141 Michael L. May and John H. Matthews 11.1 Introduction 11.2 Migratory case studies in
odonates 11.2.1 Anaxjunius 11.2.2 Pantalaflavescens 11.3 Migration and weather 11.4 Migration and reproduction 11.5 Population studies in migrating dragonflies 141 142 142 144 146 146 147
CONTENTS 12 xv 11.6 Migrants vs. residents—how might they evolve? 11.7 Future directions Acknowledgments References 149 150 150 151 Dispersal and metapopulation ecology in Odonata 155 Shannon J. McCauley, Celina B. Baines, and Karen E. Mabry Dispersal biology in ecology and evolution Dispersal biology in Odonata Methods for studying dispersal in odonates Dispersal and population structure 12.4.1 Context- and phenotype-dependent dispersal 12.4.2 Spatially structured populations 12.4.3 Dispersal and species ranges 12.5 Dispersal and colonization in the Anthropocene 12.5.1 Effects of human alteration of matrix environments on dispersal and habitat colonization 161 12.5.2 Colonization and ecological traps 12.6 Future research directions in the study of dispersal in Odonata 12.6.1 Dispersal in the context of anthropogenic change 12.6.2 Rapidly advancing methods 12.6.3 Research across a greater diversity of the world's landscapes Acknowledgments References 162 162 162 162 162 162 163 Biogeographical ecology in Odonata 167 12.1 12.2 12.3 12.4 13 155 155 156 158 158 159 159 161 Christopher D. Beatty, Fernanda Alves-Martins, Brenda D. Smith, and Julie Verheyen 13.1 Introduction to biogeography 13.1.1 Biogeographical concepts through history 13.1.2 Historical and ecological biogeography 13.2 Biogeographic realms and odonate species distributions 13.2.1 Nearctic 13.2.2 Palearctic 13.2.3 Indo-Malayan 13.2.4 Australasia 13.2.5 Oceanic-Pacific 13.2.6 Afrotropics 13.2.7 Neotropics 13.3 Factors influencing odonate distributions 13.3.1 Climatic factors 13.3.2 Precipitation 13.3.3
Temperature 13.3.4 Tracking suitable climates: differences in temperature causes different species compositions 13.3.5 Geographic barriers 13.3.6 Mountainsandplains 13.3.7 River basins 13.3.8 Glaciation patterns 13.4 Considerations of scale in odonate biogeographical analysis 167 167 168 168 169 169 169 170 170 170 170 170 170 171 171 171 171 172 172 172 172
xvi CONTENTS 13.5 Life history evolution in odonate biogeography 13.5.1 Latitudinal differences in voltinism 13.5.2 Latitudinal patterns in thermal adaptation and space-for-time substitution studies 13.6 Conservation biogeography 13.7 Future directions Acknowledgments References SECTION 4 COMMUNITY ECOLOGY 174 174 174 179 181 181 181 187 Edited by Jason T. Bried 14 Evolutionary community ecology of Odonata 189 Adam Μ. Siepieiski, Miguel Gómez-Llano, and Adam Z. Hasik 15 14.1 Introduction 14.2 Interactions in odonates 14.2.1 Predation—odonates as prey 14.2.2 Predation—odonates as predators 14.2.3 Competition 14.2.4 Parasitism 14.2.5 Reproductive interactions 14.3 Natural and sexual selection in communities 14.3.1 Selection in larvae 14.3.2 Selection in adults 14.4 Eco-evolutionary effects in communities 14.4.1 Adaptation to biotic interactions 14.4.2 Adaptation during range expansion 14.5 Future directions and conclusion Acknowledgments References 189 190 190 191 192 192 192 193 193 194 195 195 197 197 198 198 Ecological differentiation, interference, and coexistence in Odonata 203 Gregory F. Grether, Adam Μ. Siepieiski, and Miguel Gómez-Llano 15.1 Introduction 15.2 Coexistence theory 15.2.1 Local coexistence 15.2.2 Regional (non-local) coexistence 15.2.3 Interspecific interference and coexistence 15.2.4 Intraspecific interference and coexistence 15.3 Empirical studies on coexistence and competition in Odonata assemblages 15.3.1 Local coexistence 15.3.2 Regional coexistence 15.3.3 Exploitative competition among larvae 15.3.4 Interference competition among larvae 15.3.5
Interspecific aggressive and reproductive interference at the adult stage 203 204 204 206 206 207 207 207 210 210 211 212
CONTENTS 16 xvii 15.3.6 Intraspecific interference at the adult stage 15.4 Conclusions and recommendations Acknowledgments References 213 214 214 214 Odonata trophic ecology: from hunting behavior to cross-ecosystem impact 219 Arnaud Sentis, Kari Kauniste, Lenin Chari, André Morrill, Olga Popova, Justin Pomeranz, David Boukal, Nedim Tüzűn, and Robby Stoks 17 16.1 Introduction 16.2 Background to odonate trophic ecology 16.2.1 Trophic role of odonates in aquatic food webs 16.2.2 Odonate hunting behavior 16.2.3 Visual, chemical, and olfactory cues 16.3 Shifts and variation in odonate trophic relations 16.3.1 Ontogenetic scaling and trophic niche shifts 16.3.2 Sex differences in adult diet 16.3.3 Carryover effects of larval diet on adult phenotypic traits and fitness 16.3.4 Carryover effects of predation risk on adult traits 16.3.5 Metamorphosis and shifts from aquatic to terrestrial diets 16.4 Trophic and non-trophic interactions in food webs 16.4.1 Cannibalism and intraguild predation (IGP) 16.4.2 Non-trophic interactions 16.4.3 Trophic cascades and cross-ecosystem fluxes 16.5 Importance of abiotic factors in odonate trophic ecology 16.6 Eco-evolutionary dynamics of trophic interactions 16.7 Conclusions and research directions Acknowledgments References 224 225 225 226 226 226 226 227 228 229 229 229 Metacommunity concepts, approaches, and directions with Odonata 233 219 220 220 221 223 223 223 223 Jason T. Bried, Fernanda Alves-Martins, Leandro S. Brasil, and Shannon J. McCauley 17.1 17.2 17.3 17.4 Introduction to metacommunity thinking Why odonates? Some current themes in
odonate metacommunity ecology Empirical approaches to metacommunities 17.4.1 Experimental approaches 17.4.2 Observational approaches 17.4.2.1 Disentangling assembly patterns 17.4.2.2 Disentangling assembly processes 17.5 Future directions 17.5.1 Applied metacommunity thinking 17.5.1.1 Mass effects and bioassessment 17.5.1.2 Mass effects and spatial prioritization 17.5.1.3 Dispersal limitation and ecological restoration 17.5.2 Importance of historical factors 17.5.3 Toward a more high-tech and integrative metacommunity ecology Acknowledgments References 233 235 235 237 237 239 239 240 241 241 241 242 242 242 243 243 243
xviii CONTENTS 18 Odonata assemblages in human-modified landscapes 247 Brenda D. Smith, Giovanna Villalobos-Jimenez, Mary Ann C. Perron, Göran Sahlén, Giacomo Assandri, Marina Vilenica, Lenize Batista Calvāo, Leandro Juen, Francesco Cerini, and Jason T. Bried 18.1 Introduction 18.2 General challenges and methods 18.3 Logging, agriculture, and non-urban secondary habitats 18.3.1 Logging 18.3.2 Agriculture 18.3.3 Non-urban secondary habitats 18.4 Urban landscapes 18.4.1 Water in urban landscapes 18.4.2 Urban heat island (UHI) effect 18.4.3 Urban ecological traps 18.5 Challenges and future directions Acknowledgments References SECTION 5 247 250 250 250 251 252 252 253 255 255 256 256 256 DIVERSITY, SYSTEMATICS, AND BIOINFORMATICS 261 Edited by Christopher D. Beatty 19 263 Species identification and description Ângelo Parise Pinto, Cornelio Andrés Bota-Sierra, and Milen Marinov 19.1 Introduction 19.2 Species identification in Odonata 19.3 General topics in the taxonomic literature and their implication for Odonata 19.3.1 Taxa as concepts 19.3.1.1 Species 19.3.1.2 Subspecies 19.3.1.3 Taxonomic ranks below subspecies in Odonata 19.4 When is a species "new"? 19.4.1 Species delimitation in Odonata 19.4.2 Patterns of description in Odonata 19.5 Species description 19.5.1 Details included in the description 19.5.2 Naming taxa (assigning a nomen to a concept) 19.5.3 Role of the name-bearing specimens 19.6 Conclusions and suggestions for students in Odonata taxonomy and nomenclature Acknowledgments References 20 The Odonatoptera: a clade that contains 99% of Odonata fossil diversity
263 264 265 266 267 267 268 269 269 272 272 272 273 273 274 274 275 279 André Nel and Bertrand Piney 20.1 Definition of the Odonatoptera as a superorder 20.2 Major subdivisions of the Odonatoptera 279 280
CONTENTS 21 xix 20.3 What are the fossil remains of Odonatoptera? 20.4 A diversity of wing venations: a diversity of flight patterns? 20.5 Paleoecology and diversity changes since the Carboniferous 20.6 Conclusion Acknowledgments References 286 287 288 290 290 290 Odonata systematics 295 Manpreet K. Kohli and Jessica L. Ware 21.1 Introduction 21.2 Odonata systematics through time 21.2.1 Traditional systematics throughmorphology 21.2.2 Molecular renaissance 21.3 The modern Odonata tree of life 21.3.1 Zygoptera 21.3.2 Anisozygoptera 21.3.3 Anisoptera 21.3.4 Why are some nodes difficult to resolve? 21.4 Beyond systematics: phylogenies as a tool for studying Odonata evolution 21.4.1 Divergence time estimation and diversification analysis 21.4.2 Biogeographical analysis 21.4.3 Phylogenies for studying trait evolution 21.5 What systematics cannot do 21.6 Future of Odonata systematics Acknowledgments References 22 Phylogeography: a spatiotemporal perspective on Odonata distributions 295 296 296 297 298 298 299 300 301 302 302 302 303 303 303 304 304 309 Melissa Sanchez-Herrera, Yesenia Μ. Vega-Sánchez, Christopher D. Beatty, and Manpreet Kohli 23 22.1 Introduction 22.2 A global perspective: historical biogeography 22.3 Phylogeographic patterns within biogeographic realms 22.3.1 Holarctic 22.3.2 Neotropical 22.3.3 Afrotropical 22.3.4 The Indo-Australian Archipelago 22.3.5 Oceanic-Pacific 22.4 Current limitations and future perspectives Acknowledgments References 309 310 313 313 314 317 318 319 321 321 321 Odonata collections and databases 327 John C. Abbott and Emily L. Sandali
23.1 Introduction 23.2 The foundational odonate taxonomists 327 328
xx CONTENTS 23.2.1 Carolus (Carl) Linnaeus (1707-1778) 23.2.2 Jules Pierre Rambur (1801-1870) 23.2.3 Michael Edmond de Sélys Longchamps (1813-1900) 23.2.4 Hermann August Hagen (1817-1893) 23.2.5 Friedrich Ris (1867-1931) 23.2.6 Philip Powell Calvert (1871-1961) 23.2.7 Frederic Charles Fraser (1880-1963) 23.2.8 Maurits Anne Lieftinck (1904-1985) 23.3 Physical collections 23.4 Extending physical collections 23.4.1 Community science 23.4.2 Digital collections 23.5 Odonate databases and Big Data 23.5.1 Specimen digitization 23.5.2 Spatial data 23.5.3 Taxonomic data 23.5.4 Genetic/phylogenetic data 23.5.5 Trait data 23.6 Conclusions Acknowledgments References SECTION б 328 328 328 329 330 330 330 330 330 331 331 333 334 334 334 335 336 336 336 337 337 APPLIED ECOLOGY AND CONSERVATION 341 Edited by Jason T. Bried 24 343 Linking traits to extinction risk in Odonata Maya Rocha-Ortega, Rassim Khelifa, Emily L. Sandali, Charl Deacon, Xavier Sánchez-Rivero, Stefan Pinkert, and Michael A. Patten 24.1 Introduction 24.2 General considerations for studying trait-based Odonata extinction risk 24.2.1 Commonly studied odonate traits 24.3 An ecological and evolutionary perspective on trait variation 24.3.1 A functional ecological perspective 24.3.2 A functional evolutionary perspective 24.4 Community resilience and functional redundancy 24.5 Traits as predictors and proxies of extinction risk 24.6 Conclusions and future directions Acknowledgments References 25 Odonata as surrogates of biodiversity 343 344 345 348 348 348 349 350 351 353 353 359 Gabriella J. Kietzka, Charl Deacon, and Michael
A. Patten 25.1 Introduction 25.1.1 The history and terminology surrounding surrogacy 25.1.2 Chapter outline 25.2 Characteristics of good biodiversity surrogates 25.3 Dragonflies as biodiversity surrogates 359 359 361 361 362
CONTENTS 25.3.1 Importance of life stage 25.3.2 Single-taxon surrogacy and self-surrogacy 25.3.3 Multi-taxa surrogacy approaches and congruence with co-occurring taxa 25.4 Challenges and opportunities 25.4.1 Sampling methods 25.4.2 Quantifying surrogate success 25.4.3 Managing the limitations of surrogacy 25.5 Conclusion Acknowledgments References 26 xxi 362 364 365 366 366 366 366 367 367 367 Odonata as indicators of pollution, habitat quality, and landscape disturbance 371 Hana Šigutová, Aleš Dolný, Michael J. Samways, Sönke Hardersen, José Max В. Oliveira-Junior, Leandro Juen, Khuong Van Dinh, and Jason T. Bried 26.1 Introduction 26.2 Sampling considerations 26.2.1 Nymphs, exuviae, or adults? 26.2.2 Importance of long-term monitoring 26.3 Odonata as environmental health indicators 26.3.1 Pollution bioassessment 26.3.1.1 Ecotoxicology 26.3.1.2 Bioaccumulation in sentinel organisms 26.3.1.3 Pollution biotic indices 26.3.2 Habitat quality assessment 26.3.2.1 Dragonfly Biotic Index (DBI) 26.3.2.2 Lotic habitat quality 26.3.2.3 Assessing tropical forest habitat degradation via coarse taxonomic ratios 26.3.3 Landscape disturbance assessment 26.4 Toward large-scale environmental health assessments 26.4.1 Sensitivity traits 26.4.2 Citizen science Acknowledgments References 27 371 372 372 372 373 373 373 374 374 376 376 376 377 378 379 379 380 380 381 Odonata as focal taxa for biological responses to climatechange 385 Stefan Pinkert, Viola Clausnitzer, Daniel Acquah-Lamptey, Paulo De Marco, and Frank Johansson 27.1 27.2 27.3 27.4 27.5 General introduction and chapter outline
Climatic drivers of diversity patterns Biogeographical processes shaping diversity patterns Mechanisms underpinning species' responses to climate change Trait-based analysis of range shifts, population trends, and phenological changes 27.5.1 Range shifts 27.5.2 Population trends 27.5.3 Phenological changes 27.6 Climate change and competition 385 387 387 387 389 389 389 390 390
xxii CONTENTS 28 27.7 Climate change and habitat loss as threats to Odonata diversity 27.8 Modeling speciesdistributions and their dynamics 27.9 Conclusions Acknowledgments References 393 394 396 396 396 Odonata as focal taxa 401 for ecologicalrestoration Filip Harabiš, John P. Simaika, Aleš Dolný, Sarah H. Luke, Merja Elo, Jason T. Bried, and Michael J. Samways 28.1 Introduction 28.2 General principles and challenges of restoration practice 28.3 General considerations for restoring odonate populations and assemblages 28.4 Odonate-based habitat restoration 28.4.1 Lotic habitats 28.4.2 Lentic habitats 28.4.3 Mixed lentic and lotic habitats 28.5 Restoration progress and odonates as management indicators 28.5.1 Odonates as indicators of restoration progress 28.6 Restoration by translocation 28.7 Conclusions and directions Acknowledgments References 29 Bridging people and nature through Odonata 401 402 403 405 405 405 407 407 407 408 408 409 409 413 Amanda Dillon, John Simaika, Viola Clausnitzer, Ami Thompson, Erin White, Jenilee Montes-Fontalvo, Christine Goforth, and Rassim Khelifa 29.1 29.2 29.3 29.4 29.5 413 414 414 416 419 419 419 419 420 420 421 423 423 423 423 423 424 424 Glossary Subject Index 427 445 Introduction Odonata in ecotourism Odonata in childhood environmental education Defining Odonata species ranges using community science Odonata conservation listing 29.5.1 IUCN Red List of Threatened Species 29.5.2 Odonata and the Red List 29.5.2.1 Africa 29.5.2.2 Latin America 29.6 Territorial empowerment via Odonata 29.7 The EDI barrier to globalized odonatology 29.7.1
International collaborations 29.7.2 Reconsidering the publishing process 29.7.3 International research funding and surveys 29.7.4 Giving back 29.8 Conclusion Acknowledgments References |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Córdoba-Aguilar, Alex Beatty, Christopher D. Bried, Jason T. |
author2_role | edt edt edt |
author2_variant | a c a aca c d b cd cdb j t b jt jtb |
author_GND | (DE-588)1165261022 |
author_facet | Córdoba-Aguilar, Alex Beatty, Christopher D. Bried, Jason T. |
building | Verbundindex |
bvnumber | BV048535197 |
classification_rvk | WQ 3750 |
ctrlnum | (OCoLC)1354312336 (DE-599)BVBBV048535197 |
discipline | Biologie |
discipline_str_mv | Biologie |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008c 4500</leader><controlfield tag="001">BV048535197</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221207</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">221028s2023 a||| b||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780192898623</subfield><subfield code="9">978-0-19-289862-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0192898620</subfield><subfield code="9">0-19-289862-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1354312336</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048535197</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WQ 3750</subfield><subfield code="0">(DE-625)151389:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dragonflies and damselflies</subfield><subfield code="b">model organisms for ecological and evolutionary research</subfield><subfield code="c">edited by Alex Córdoba-Aguilar (Researcher, Universidad Nacional Autónoma de México), Christopher D. Beatty (Visiting Scholar, Program for Conservation Genomics, Stanford University), Jason T. Bried (Research Scientist, Illinois Natural History Survey, Prairie Research Insitute, University of Illinois at Urbana-Champaign)</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Oxford</subfield><subfield code="b">Oxford University Press</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiv, 459 Seiten</subfield><subfield code="b">Illustrationen, Diagramme, Karten</subfield><subfield code="c">25 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Libellen</subfield><subfield code="0">(DE-588)4035570-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Dragonflies</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Damselflies</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Insects / Evolution</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Libellen</subfield><subfield code="0">(DE-588)4035570-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Córdoba-Aguilar, Alex</subfield><subfield code="0">(DE-588)1165261022</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beatty, Christopher D.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bried, Jason T.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033911827&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033911827</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV048535197 |
illustrated | Illustrated |
index_date | 2024-07-03T20:53:36Z |
indexdate | 2024-08-21T00:43:24Z |
institution | BVB |
isbn | 9780192898623 0192898620 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033911827 |
oclc_num | 1354312336 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | xxiv, 459 Seiten Illustrationen, Diagramme, Karten 25 cm |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Oxford University Press |
record_format | marc |
spelling | Dragonflies and damselflies model organisms for ecological and evolutionary research edited by Alex Córdoba-Aguilar (Researcher, Universidad Nacional Autónoma de México), Christopher D. Beatty (Visiting Scholar, Program for Conservation Genomics, Stanford University), Jason T. Bried (Research Scientist, Illinois Natural History Survey, Prairie Research Insitute, University of Illinois at Urbana-Champaign) Second edition Oxford Oxford University Press [2023] xxiv, 459 Seiten Illustrationen, Diagramme, Karten 25 cm txt rdacontent n rdamedia nc rdacarrier Libellen (DE-588)4035570-6 gnd rswk-swf Dragonflies Damselflies Insects / Evolution (DE-588)4143413-4 Aufsatzsammlung gnd-content Libellen (DE-588)4035570-6 s DE-604 Córdoba-Aguilar, Alex (DE-588)1165261022 edt Beatty, Christopher D. edt Bried, Jason T. edt Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033911827&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Dragonflies and damselflies model organisms for ecological and evolutionary research Libellen (DE-588)4035570-6 gnd |
subject_GND | (DE-588)4035570-6 (DE-588)4143413-4 |
title | Dragonflies and damselflies model organisms for ecological and evolutionary research |
title_auth | Dragonflies and damselflies model organisms for ecological and evolutionary research |
title_exact_search | Dragonflies and damselflies model organisms for ecological and evolutionary research |
title_exact_search_txtP | Dragonflies and damselflies model organisms for ecological and evolutionary research |
title_full | Dragonflies and damselflies model organisms for ecological and evolutionary research edited by Alex Córdoba-Aguilar (Researcher, Universidad Nacional Autónoma de México), Christopher D. Beatty (Visiting Scholar, Program for Conservation Genomics, Stanford University), Jason T. Bried (Research Scientist, Illinois Natural History Survey, Prairie Research Insitute, University of Illinois at Urbana-Champaign) |
title_fullStr | Dragonflies and damselflies model organisms for ecological and evolutionary research edited by Alex Córdoba-Aguilar (Researcher, Universidad Nacional Autónoma de México), Christopher D. Beatty (Visiting Scholar, Program for Conservation Genomics, Stanford University), Jason T. Bried (Research Scientist, Illinois Natural History Survey, Prairie Research Insitute, University of Illinois at Urbana-Champaign) |
title_full_unstemmed | Dragonflies and damselflies model organisms for ecological and evolutionary research edited by Alex Córdoba-Aguilar (Researcher, Universidad Nacional Autónoma de México), Christopher D. Beatty (Visiting Scholar, Program for Conservation Genomics, Stanford University), Jason T. Bried (Research Scientist, Illinois Natural History Survey, Prairie Research Insitute, University of Illinois at Urbana-Champaign) |
title_short | Dragonflies and damselflies |
title_sort | dragonflies and damselflies model organisms for ecological and evolutionary research |
title_sub | model organisms for ecological and evolutionary research |
topic | Libellen (DE-588)4035570-6 gnd |
topic_facet | Libellen Aufsatzsammlung |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033911827&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT cordobaaguilaralex dragonfliesanddamselfliesmodelorganismsforecologicalandevolutionaryresearch AT beattychristopherd dragonfliesanddamselfliesmodelorganismsforecologicalandevolutionaryresearch AT briedjasont dragonfliesanddamselfliesmodelorganismsforecologicalandevolutionaryresearch |