Quantum Technologies:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Stuttgart, Germany
Fraunhofer Verlag
[2022]
|
Schriftenreihe: | Fraunhofer-Forschungsfokus
|
Schlagworte: | |
Online-Zugang: | Inhaltstext Inhaltsverzeichnis |
Beschreibung: | 425 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm |
ISBN: | 3839618509 9783839618509 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV048533321 | ||
003 | DE-604 | ||
005 | 20221121 | ||
007 | t | ||
008 | 221026s2022 gw a||| |||| 00||| eng d | ||
015 | |a 22,N40 |2 dnb | ||
016 | 7 | |a 1268946486 |2 DE-101 | |
020 | |a 3839618509 |9 3-8396-1850-9 | ||
020 | |a 9783839618509 |c hbk: EUR 129.00 (DE), EUR 132.70 (AT), CHF 198.70 (freier Preis) |9 978-3-8396-1850-9 | ||
024 | 3 | |a 9783839618509 | |
028 | 5 | 2 | |a Bestellnummer: fhg-zv_6 |
035 | |a (OCoLC)1346655189 | ||
035 | |a (DE-599)DNB1268946486 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-29T | ||
084 | |8 1\p |a 530 |2 23sdnb | ||
245 | 1 | 0 | |a Quantum Technologies |
264 | 1 | |a Stuttgart, Germany |b Fraunhofer Verlag |c [2022] | |
300 | |a 425 Seiten |b Illustrationen, Diagramme |c 21 cm x 14.8 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 0 | |a Fraunhofer-Forschungsfokus | |
650 | 0 | 7 | |a Sensor |0 (DE-588)4038824-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantencomputer |0 (DE-588)4533372-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantentechnologie |0 (DE-588)1197831657 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Quantenkommunikation |0 (DE-588)4596977-2 |2 gnd |9 rswk-swf |
653 | |a Applied optics | ||
653 | |a Communications engineering | ||
653 | |a Electronic engineering | ||
653 | |a Entwicklungsingenieure | ||
653 | |a Industrial applications | ||
653 | |a Physiker | ||
653 | |a Quantum field theory | ||
653 | |a Quantum mechanics | ||
653 | |a Quantum physics | ||
653 | |a Scientific research | ||
653 | |a Technological innovation | ||
653 | |a Technologiemanager | ||
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Quantentechnologie |0 (DE-588)1197831657 |D s |
689 | 0 | 1 | |a Quantenkommunikation |0 (DE-588)4596977-2 |D s |
689 | 0 | 2 | |a Quantencomputer |0 (DE-588)4533372-5 |D s |
689 | 0 | 3 | |a Sensor |0 (DE-588)4038824-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Neugebauer, Reimund |d 1953- |0 (DE-588)124315828 |4 edt | |
710 | 2 | |a Fraunhofer IRB-Verlag |0 (DE-588)4786605-6 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-8396-1855-4 |
856 | 4 | 2 | |m X:MVB |q text/html |u http://deposit.dnb.de/cgi-bin/dokserv?id=fdda3462040d40f5be374fb0affdb105&prov=M&dok_var=1&dok_ext=htm |3 Inhaltstext |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033910004&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033910004 | ||
883 | 1 | |8 1\p |a vlb |d 20220927 |q DE-101 |u https://d-nb.info/provenance/plan#vlb |
Datensatz im Suchindex
_version_ | 1804184528533585920 |
---|---|
adam_text | TABLE
OF
CONTENTS
THE
QUANTUM
LEAP
FROM
LAB
TO
APPLICATION
......................
13
1
QUANTUM
SOLUTIONS
-
BEYOND
CLASSICAL
LIMITATIONS
...........
13
2
FROM
THE
FIRST
TO
THE
SECOND
QUANTUM
REVOLUTION
...............
14
3
TECHNOLOGICAL
AND
ECONOMIC
PROSPECTS
.................................
16
GAUGING
THE
STATE
OF
DEVELOPMENTS
.....................................
19
1
ON
THE
ROUTE
TO
A
KEY
EMERGENT
TECHNOLOGY
........................
19
1.1
MOTIVATION
AND
INSPIRATION
..............................................
19
1.2
PATHWAYS
TO
INNOVATION
AND
QUANTUM
ECOSYSTEMS
....
20
1.3
EVALUATING
AND
DIRECTING
PROGRESS
IN
THE
FIELD
...............
22
2
CURRENT
TECHNOLOGICAL
CHALLENGES
..........................................
24
2.1
INTEGRATION
AND
UPSCALING
..............................................
24
2.2
QUANTUM
INFRASTRUCTURES
................................................
27
3
CURRENT
STRATEGICAL
CHALLENGES
..............................................
31
3
TRIBUTES
AND
FUTURE
PROSPECTS
................................................
34
1
QUANTUM
SENSING
40
SENSITIVE
OPPORTUNITIES
IN
A
NEW
WORLD
...............................
41
NITROGEN-VACANCY
CENTERS:
A
QUANTUM
SENSOR
FOR
MAGNETIC
FIELDS
....................................................................
43
1
INTRODUCTION
............................................................................
43
2
QUANTUM
MAGNETOMETRY
WITH
NV
CENTERS
..........................
44
2.1
ADVANTAGES
......................................................................
48
2.2
LIMITATIONS
........................................................................
49
2.3
OVERCOMING
LIMITATIONS
WITH
THE
WIDE-FIELD
MAGNETOMETER
...........................................................
50
2.4
THE
INSTRUMENT
...............................................................
51
3
SPECIFIC
DIAMOND
DEVELOPMENT
FOR
WIDE-FIELD
......................
54
3.1
DIAMOND
SUBSTRATES,
HOMOEPITAXIAL
GROWTH,
AND
NITROGEN-DOPED
6-LAYERS
.........................................
54
4
APPLICATIONS
............................................................................
57
4.1
MAGNETIC
NANOPARTICLE
MEASUREMENT
............................
58
4.2
MATERIAL
SCIENCE
-
STEEL
ALLOYS
..........................................
61
5
CONCLUSIONS
AND
OUTLOOK
.......................................................
64
6
ACKNOWLEDGEMENTS
................................................................
65
7
REFERENCES
...............................................................................
66
QUANTUM
MAGNETOMETRY
BASED
FLOW
METERING
..................
69
1
QUANTUM
MAGNETOMETRY
WITH
OPTICALLY
PUMPED
MAGNETOMETERS
...................................................................
70
2
THE
CONCEPT
OF
QUANTUM
MAGNETOMETRY-BASED
FLOW
METERING
.....................................................................
72
3
THE
ADDED
VALUE
FOR
FLOW
METERING
.....................................
76
4
REFERENCES
...............................................................................
79
LASER
THRESHOLD
MAGNETOMETRY
..............................................
81
1
THE
IDEA:
IMPROVING
SENSITIVITY
VIA
LASER
READOUT
..................
81
2
MEASURING
STIMULATED
EMISSION
FROM
NV
CENTERS
...............
86
3
MAGNETIC-FIELD-DEPENDENT
LIGHT
AMPLIFICATION
WITH
STRONG
SIGNALS
AND
RECORD
CONTRAST
....................................
89
4
REFERENCES
...............................................................................
92
MATERIAL
TESTING
WITH
OPTICALLY
PUMPED
MAGNETOMETERS
..
95
1
GENERAL
INTRODUCTION
.............................................................
96
2
MAGNETIC
MEASURING
OF
DEFECTS
IN
MATERIALS
........................
96
3
QUANTUM
SENSING
WITH
OPTICALLY
PUMPED
MAGNETOMETERS
.
.
98
4
MAGNETIC
RESPONSE
TO
THE
FATIGUE
PROCESSES
........................
100
5
MEASURING
THE
MAGNETIC
FATIGUE
RESPONSE
..........................
102
6
CONCLUSIONS
AND
OUTLOOK
.......................................................
107
7
REFERENCES
...............................................................................
108
FRAUNHOFER
CAP
...........................................................................
111
1
FRAUNHOFER
CAP
AND
THE
UK
PERSPECTIVE
.............................
111
2
COLD-ATOM
SENSOR
TECHNOLOGIES
............................................
112
2.1
INTRODUCTION
TO
ATOM
INTERFEROMETERS
.............................
113
2.2
INTRODUCTION
TO
LASER
REQUIREMENTS
FOR
QUANTUM
SENSORS
114
2.3
TAPERED
AMPLIFIER
DEVELOPMENT
.....................................
117
3
SPADS
FOR
TIME-RESOLVED
REMOTE
SPECTROSCOPY
....................
118
3.1
REMOTE
SENSING
OF
HYDROGEN
..........................................
118
3.2
RESULTS
ON
REMOTE
SENSING
OF
HYDROGEN
........................
120
4
PHOTONIC
INTEGRATION
FOR
QUANTUM
SENSING
..........................
122
4.1
INTEGRATED
SOURCES
OF
QUANTUM
LIGHT
............................
122
4.2
MICRO-OPTIC
INTEGRATION
FOR
SCANNING
MAGNETOMETERS
.
.
125
5
CONCLUSIONS
AND
OUTLOOK
.......................................................
128
6
REFERENCES
...............................................................................
129
2
QUANTUM
IMAGING
134
CORRELATED
PHOTON
PAIRS
PERFORM
DIVISION
OF
LABOR
ACROSS
WAVELENGTH
REGION
.......................................................
135
REFERENCES
.................................................................................
140
QUANTUM
HOLOGRAPHY
WITH
UNDETECTED
LIGHT
.....................
141
1
FROM
CLASSICAL
TO
QUANTUM
HOLOGRAPHY
.................................
141
2
NONLINEAR
INTERFEROMETER
FOR
IMAGING
...................................
143
3
PHASE-SHIFTING
HOLOGRAPHY
....................................................
145
4
QUANTUM
HOLOGRAPHY
WITH
UNDETECTED
LIGHT
......................
147
5
NOISE
RESILIENCE
......................................................................
148
6
REFERENCES
...............................................................................
151
QUANTUM
GHOST
IMAGING
WITH
ASYNCHRONOUS
DETECTION
.
.
153
1
INTRODUCTION
............................................................................
153
2
QUANTUM
GHOST
IMAGING
(QGI)
..............................................
155
3
RESULTS
.....................................................................................
160
4
IMAGE
RECONSTRUCTION
.............................................................
161
5
RELEVANT
QUANTUM
BENEFITS
..................................................
162
5.1
UNIFORM
ENERGY
DISTRIBUTION:
RELAXED
SAFETY
THRESHOLDS
.
.
162
5.2
INCOHERENT
SOURCE:
IMPROVED
IMAGE
QUALITY
.................
163
5.3
INHERENT
RANDOMNESS:
NON-DETECTABILITY
AND
SUPERIOR
PROTECTION
.....................................................
163
6
CONCLUSIONS
AND
OUTLOOK
.......................................................
164
7
REFERENCES
...............................................................................
165
QUANTUM
FOURIER
TRANSFORM
INFRARED
SPECTROSCOPY
...........
167
1
INTRODUCTION
............................................................................
167
2
THE
QUANTUM
FOURIER
TRANSFORM
SPECTROMETER
....................
169
2.1
CORRELATED
PHOTON
SOURCE
..............................................
169
2.2
NONLINEAR
INTERFEROMETER
................................................
171
2.3
SPECTRAL
ANALYSIS
...............................................................
173
3
CONCLUSIONS
AND
OUTLOOK
.......................................................
178
4
REFERENCES
..............................................................................
178
QUANTUM
IMAGING
WITH
UNDETECTED
PHOTONS
IN
THE
MID-INFRARED
........................................................................
181
1
QUANTUM
IMAGING
IN
NONLINEAR
INTERFEROMETERS
.................
181
1.1
SPONTANEOUS
PARAMETRIC
DOWNCONVERSION.
SOURCES
FOR
CORRELATED
PHOTON
PAIRS
...............................
182
1.2
IMAGING
WITH
UNDETECTED
PHOTONS
IN
NONLINEAR
INTERFEROMETERS
.........................................................
183
1.3
STATE-OF-THE-ART
QUANTUM
IMAGING
IN
THE
MID-INFRARED
.
.
184
2
MIR
QUANTUM
IMAGING
WITH
LARGE
APERTURE
CRYSTALS
IN
LONG-PASS
INTERFEROMETER
CONFIGURATION
...........................
185
2.1
DESIGN
CONSIDERATIONS
.....................................................
185
2.2
SETUP
AND
RESULTS
.............................................................
187
2.3
CONCLUSIONS
AND
OUTLOOK
................................................
190
3
REFERENCES
...............................................................................
190
TERAHERTZ
SPECTROSCOPY
WITH
VISIBLE
PHOTONS
......................
193
1
INTRODUCTION
.............................................................................
194
2
GENERATION
OF
CORRELATED
TERAHERTZ-VISIBLE
PHOTON
PAIRS
...
195
3
TERAHERTZ
SPECTROSCOPY
WITH
VISIBLE
LIGHT
...............................
199
4
QUANTUM-INSPIRED
TERAHERTZ
SPECTROSCOPY
WITH
PULSED
SOURCES
.....................................................................
202
5
CONCLUSIONS
AND
OUTLOOK
.......................................................
204
6
REFERENCES
...............................................................................
205
3
QUANTUM
COMMUNICATION
210
QUANTUM
COMMUNICATION:
SECURE
COMMUNICATION
BY
QUANTUM
KEY
DISTRIBUTION
................................................
211
QUANTUM
COMMUNICATION
SYSTEMS
AND
PROTOCOLS
.............
213
1
MOTIVATION
...............................................................................
213
2
QUANTUM
COMMUNICATION
SYSTEMS
FOR
OPTICAL
NETWORKS
...
215
2.1
MASSIVELY
MULTIPLEXED
QUANTUM
CHANNELS
......................
215
2.2
SIMULTANEOUS
TRANSMISSION
OF
QUANTUM
AND
CLASSICAL
CHANNELS
.......................................................
217
2.3
A
REAL-TIME
EXPERIMENTATION
QKD
PLATFORM
FOR
QUANTUM-SECURE
TELECOM
INFRASTRUCTURES
...............
218
3
CONCLUSIONS
AND
OUTLOOK
.......................................................
223
4
REFERENCES
...............................................................................
223
SATELLITE-BASED
ENTANGLEMENT
COMMUNICATION
AT
FRAUNHOFER
IOF
......................................................................
225
1
ENTANGLEMENT-BASED
QUANTUM
COMMUNICATION
IN
SPACE
.
.
.
225
2
BASIC
LINK
CONSIDERATIONS
.......................................................
227
3
HIGH
PERFORMANT
ENTANGLED
PHOTON
SOURCES
........................
230
4
CONCLUSIONS
AND
OUTLOOK
.......................................................
233
5
REFERENCES
...............................................................................
234
PHOTONIC
COMPONENTS
FOR
QUANTUM
TECHNOLOGIES
.............
235
1
INTRODUCTION
............................................................................
235
2
ACTIVE
COMPONENTS
FOR
INTEGRATION
.......................................
236
2.1
SINGLE-PHOTON
AVALANCHE
DETECTORS
...............................
237
2.2
INP-BASED
PHOTONIC
INTEGRATED
CIRCUITS
..........................
239
3
HYBRID
INTEGRATION
..................................................................
241
3.1
POLYBOARD
PLATFORM
.........................................................
242
3.2
MICRO-OPTICAL
BENCH
.........................................................
246
4
CONCLUSIONS
AND
OUTLOOK
.......................................................
249
5
REFERENCES
...............................................................................
249
MODULAR
NANOELECTRONICS
FOR
QUANTUM
COMMUNICATION
..
251
1
MOTIVATION
...............................................................................
251
2
MODULAR
ELECTRONICS
PLATFORM
................................................
253
2.1
CHIPLET
TECHNOLOGY
.........................................................
254
2.2
DIGITAL
SIGNAL
PROCESSORS
..................................................
256
2.3
ANALOG
DIGITAL
CONVERTER
..................................................
257
2.4
DIGITAL
ANALOG
CONVERTER
..................................................
259
2.5
TIME-TO-DIGITAL
CONVERTERS
..............................................
259
2.6
FURTHER
DEVELOPMENT
OF
THE
CHIPLET
TOOLBOX
..................
260
3
QKD
TEST
ENVIRONMENT
FOR
CIRCUIT
DEVELOPMENT
..................
261
4
CONCLUSIONS
AND
OUTLOOK
.......................................................
263
5
REFERENCES
...............................................................................
264
LOW-NOISE
QUANTUM
FREQUENCY
CONVERTERS
FOR
THE
QUANTUM
INTERNET
......................................................................
267
1
QUANTUM
INTERNET
.................................................................
268
1.1
QUANTUM
NETWORKS
.........................................................
269
1.2
THE
QUANTUM
INTERFACE
..................................................
270
1.3
THE
QUANTUM
INTERNET
DEMONSTRATOR
PROJECT
ATQUTECH
..................................................................
271
2
QUANTUM
FREQUENCY
CONVERSION
............................................
272
2.1
PERFORMANCE
REQUIREMENTS
OF
A
QFC,
EVERY
PHOTON
COUNTS
................................................
272
2.2
WORKING
PRINCIPLE,
DESIGN
CHALLENGES,
AND
STATE
OF
THE
ART
...................................................................
273
2.3
NORA
-
A
NOISE-REDUCED
APPROACH
FOR
A
QFC
.............
274
2.4
PROTOTYPING
AND
TESTING
OF
NORA
QFC
..........................
276
3
NEXT
STEPS
...............................................................................
279
4
REFERENCES
...............................................................................
280
4
QUANTUM
COMPUTING
284
INTRODUCTION
.................................................................................
285
QUANTUM
COMPUTING
FROM
MATERIALS
TO
APPLICATION
.........
291
1
SILICON
CARBIDE
-
A
PROMISING
MATERIAL
FOR
QUANTUM
COMPUTING
............................................................................
292
2
SIC
SEMICONDUCTOR
TECHNOLOGY
AND
SIMULATION
.....................
295
3
INTEGRATION
AND
MATERIAL
ASPECTS
FOR
QUANTUM
COMPUTING
...............................................................................
298
4
QUANTUM
COMPUTING
FOR
SIMULATION
UND
OPTIMIZATION
....
301
5
CONCLUSIONS
AND
OUTLOOK
.......................................................
305
6
REFERENCES
...............................................................................
306
LEVERAGING
MICROELECTRONICS
FOR
LARGE-SCALE
QUANTUM
COMPUTING
HARDWARE
............................................
309
1
INTRODUCTION
HARDWARE
FOR
QUANTUM
COMPUTING
..................
310
1.1
QUBIT
PLATFORMS
-
A
TECHNOLOGIC
OVERVIEW
....................
311
2
CHALLENGES
TOWARD
MEANINGFUL
SYSTEMS
...............................
312
3
CONCRETE
POTENTIAL
FOR
SEGMENTS
OF
THE
QUANTUM
COMPUTING
STACK
.................................................................
313
3.1
SUPERCONDUCTING
QUBITS
..................................................
314
3.2
SPIN-BASED
QUANTUM
DOT
QUBITS
.....................................
317
3.3
PHOTONIC
QUBITS
................................................................
318
3.4
NEUTRAL
ATOMS
..................................................................
319
3.5
2D
AND
3D
INTEGRATION
.....................................................
320
3.6
CO-INTEGRATION
WITH
CMOS
LOGIC
...................................
321
4
CONCLUSIONS
AND
OUTLOOK
.......................................................
322
5
REFERENCES
......................
323
ERROR
CHARACTERIZATION,
MITIGATION,
AND
CORRECTION
...........
325
1
QUANTUM
GATE
ERROR
CHARACTERIZATION
...................................
325
1.1
FROM
PROCESS
TO
GATE
SET
TOMOGRAPHY
..........................
326
1.2
LONG-SEQUENCE
QUANTUM
PROCESS
TOMOGRAPHY
.............
330
1.3
CROSSTALK
CHARACTERIZATION
..............................................
331
2
ERROR
MITIGATION
......................................................................
332
3
QUANTUM
ERROR
CORRECTION
.....................................................
336
3.1
CLASSICAL
ERROR
CORRECTION
................................................
337
3.2
THREE-QUBIT
BITFLIP
CODE
..................................................
338
3.3
THRESHOLD
THEOREM
OF
FAULT-TOLERANT
QUANTUM
COMPUTING
..................................................................
339
4
REFERENCES
...............................................................................
340
QUANTUM
HPC
ALGORITHMS
AND
WORKFLOWS
..........................
343
1
MOTIVATION:
QUANTUM
COMPUTERS
AS
ACCELERATORS
OF
HPC
SYSTEMS
.....................................................
343
2
TECHNOLOGIES
AND
APPROACHES
................................................
344
3
HYBRID
SIMULATION
AT
THE
ALGORITHMIC
LEVEL
............................
345
4
NISQ
QUANTUM
APPLICATIONS
..................................................
347
5
TOWARD
HYBRID
HPC
/
QUANTUM
WORKFLOWS
..........................
349
6
CHARACTERIZATION
OF
HYBRID
WORKFLOWS
AND
ALGORITHMS
.........
350
7
IMPORTANT
PARAMETERS
FOR
INTEGRATING
QC
INTO
HPC
SYSTEMS
.......................................................................
351
8
CONCLUSIONS
AND
OUTLOOK
.......................................................
353
9
REFERENCES
...............................................................................
354
QUANTUM
MACHINE
LEARNING
..................................................
355
1
INTRODUCTION
............................................................................
355
2
WHAT
IS
MACHINE
LEARNING?
..................................................
356
3
WHAT
IS
QUANTUM
COMPUTING?
............................................
357
4
WHAT
IS
QUANTUM
MACHINE
LEARNING?
.................................
359
5
CURRENT
LIMITATIONS
FOR
QML
..................................................
363
6
SUGGESTIONS
FOR
QML
IN
THE
NISQ
ERA
...................................
367
7
CONCLUSIONS
AND
OUTLOOK
.......................................................
369
8
REFERENCES
..............................................................................
370
QOMPILER:
INTEROPERABLE
AND
STANDARDIZABLE
QUANTUM
SOFTWARE
STACK
..................................
373
1
INTRODUCTION
............................................................................
374
2
PROGRESS
BEYOND
STATE
OF
THE
ART
............................................
375
3
THE
NEED
FOR
A
STANDARDIZED
SOFTWARE
STACK
........................
377
4
QRISP:
QUANTUM
HIGH-LEVEL
PROGRAMMING
LANGUAGE
............
379
5
STANDARDIZABLE
INTERFACE
.....................
381
6
EXPLOITATION
PATHS
.................................................................
383
7
CONCLUSIONS
AND
OUTLOOK
.......................................................
384
8
REFERENCES
..............................................................................
385
APPROACHES
TO
THE
STRUCTURED
DEVELOPMENT,
TEST,
AND
OPERATION
OF
QUANTUM-BASED
ICT
SYSTEMS
..................
387
1
INTRODUCTION
.............................................................................
388
2
RELATED
WORK
...........................................................................
388
3
QUANTUM
DEVOPS
..................................................................
389
4
OVERVIEW
OF
TOOLS
FOR
QUANTUM
DEVOPS
...............................
392
4.1
TOOLS
FOR
THE
DEV
SUBCYCLE
..............................................
393
4.2
TOOLS
FOR
THE
OPS
SUBCYCLE
..............................................
394
4.3
OVERALL
DEVOPS
AUTOMATION
............................................
395
5
BENCHMARKING
FOR
QUANTUM
DEVOPS
...................................
396
5.1
TRANSPILATION
AND
QUANTUM
CIRCUIT
OPTIMIZATION
...........
397
5.2
SIMULATIONS
UNDER
SUITABLE
NOISE
MODELS
......................
398
5.3
QPU
BACKEND
DECISION
.....................................................
398
5.4
EXECUTION
ON
THE
QPU
.....................................................
399
6
USE
CASES
.................................................................................
400
6.1
TRAVELING
SALESMAN
PROBLEM
IN
QUANTUM
DEVOPS
.........
400
6.2
VARIATIONAL
QUANVOLUTIONAL
NEURAL
NETWORKS
WITH
ENHANCED
IMAGE
ENCODING
FOR
IMAGE
CLASSIFICATION
....
403
7
CONCLUSIONS
AND
OUTLOOK
.......................................................
405
8
REFERENCES
...............................................................................
406
FRAUNHOFER
COMPETENCE
NETWORK
QUANTUM
COMPUTING
..
409
1
FRAUNHOFER
COMPETENCE
NETWORK
QUANTUM
COMPUTING:
AIM
AND
STRUCTURE
...............................................................
409
2
FRAUNHOFER
AS
AN
ENABLER
FOR
RESEARCH
AND
INDUSTRY
............
411
3
CURRENT
PROJECTS
USING
THE
IBM
QUANTUM
SYSTEM
ONE
....
412
4
CONCLUSIONS
AND
OUTLOOK
.......................................................
414
5
REFERENCES
...............................................................................
415
LIST
OF
AUTHORS
.............................................................................
417
|
adam_txt |
TABLE
OF
CONTENTS
THE
QUANTUM
LEAP
FROM
LAB
TO
APPLICATION
.
13
1
QUANTUM
SOLUTIONS
-
BEYOND
"
CLASSICAL"
LIMITATIONS
.
13
2
FROM
THE
FIRST
TO
THE
SECOND
QUANTUM
REVOLUTION
.
14
3
TECHNOLOGICAL
AND
ECONOMIC
PROSPECTS
.
16
GAUGING
THE
STATE
OF
DEVELOPMENTS
.
19
1
ON
THE
ROUTE
TO
A
KEY
EMERGENT
TECHNOLOGY
.
19
1.1
MOTIVATION
AND
INSPIRATION
.
19
1.2
PATHWAYS
TO
INNOVATION
AND
QUANTUM
ECOSYSTEMS
.
20
1.3
EVALUATING
AND
DIRECTING
PROGRESS
IN
THE
FIELD
.
22
2
CURRENT
TECHNOLOGICAL
CHALLENGES
.
24
2.1
INTEGRATION
AND
UPSCALING
.
24
2.2
QUANTUM
INFRASTRUCTURES
.
27
3
CURRENT
STRATEGICAL
CHALLENGES
.
31
3
TRIBUTES
AND
FUTURE
PROSPECTS
.
34
1
QUANTUM
SENSING
40
SENSITIVE
OPPORTUNITIES
IN
A
NEW
WORLD
.
41
NITROGEN-VACANCY
CENTERS:
A
QUANTUM
SENSOR
FOR
MAGNETIC
FIELDS
.
43
1
INTRODUCTION
.
43
2
QUANTUM
MAGNETOMETRY
WITH
NV
CENTERS
.
44
2.1
ADVANTAGES
.
48
2.2
LIMITATIONS
.
49
2.3
OVERCOMING
LIMITATIONS
WITH
THE
WIDE-FIELD
MAGNETOMETER
.
50
2.4
THE
INSTRUMENT
.
51
3
SPECIFIC
DIAMOND
DEVELOPMENT
FOR
WIDE-FIELD
.
54
3.1
DIAMOND
SUBSTRATES,
HOMOEPITAXIAL
GROWTH,
AND
NITROGEN-DOPED
6-LAYERS
.
54
4
APPLICATIONS
.
57
4.1
MAGNETIC
NANOPARTICLE
MEASUREMENT
.
58
4.2
MATERIAL
SCIENCE
-
STEEL
ALLOYS
.
61
5
CONCLUSIONS
AND
OUTLOOK
.
64
6
ACKNOWLEDGEMENTS
.
65
7
REFERENCES
.
66
QUANTUM
MAGNETOMETRY
BASED
FLOW
METERING
.
69
1
QUANTUM
MAGNETOMETRY
WITH
OPTICALLY
PUMPED
MAGNETOMETERS
.
70
2
THE
CONCEPT
OF
QUANTUM
MAGNETOMETRY-BASED
FLOW
METERING
.
72
3
THE
ADDED
VALUE
FOR
FLOW
METERING
.
76
4
REFERENCES
.
79
LASER
THRESHOLD
MAGNETOMETRY
.
81
1
THE
IDEA:
IMPROVING
SENSITIVITY
VIA
LASER
READOUT
.
81
2
MEASURING
STIMULATED
EMISSION
FROM
NV
CENTERS
.
86
3
MAGNETIC-FIELD-DEPENDENT
LIGHT
AMPLIFICATION
WITH
STRONG
SIGNALS
AND
RECORD
CONTRAST
.
89
4
REFERENCES
.
92
MATERIAL
TESTING
WITH
OPTICALLY
PUMPED
MAGNETOMETERS
.
95
1
GENERAL
INTRODUCTION
.
96
2
MAGNETIC
MEASURING
OF
DEFECTS
IN
MATERIALS
.
96
3
QUANTUM
SENSING
WITH
OPTICALLY
PUMPED
MAGNETOMETERS
.
.
98
4
MAGNETIC
RESPONSE
TO
THE
FATIGUE
PROCESSES
.
100
5
MEASURING
THE
MAGNETIC
FATIGUE
RESPONSE
.
102
6
CONCLUSIONS
AND
OUTLOOK
.
107
7
REFERENCES
.
108
FRAUNHOFER
CAP
.
111
1
FRAUNHOFER
CAP
AND
THE
UK
PERSPECTIVE
.
111
2
COLD-ATOM
SENSOR
TECHNOLOGIES
.
112
2.1
INTRODUCTION
TO
ATOM
INTERFEROMETERS
.
113
2.2
INTRODUCTION
TO
LASER
REQUIREMENTS
FOR
QUANTUM
SENSORS
114
2.3
TAPERED
AMPLIFIER
DEVELOPMENT
.
117
3
SPADS
FOR
TIME-RESOLVED
REMOTE
SPECTROSCOPY
.
118
3.1
REMOTE
SENSING
OF
HYDROGEN
.
118
3.2
RESULTS
ON
REMOTE
SENSING
OF
HYDROGEN
.
120
4
PHOTONIC
INTEGRATION
FOR
QUANTUM
SENSING
.
122
4.1
INTEGRATED
SOURCES
OF
QUANTUM
LIGHT
.
122
4.2
MICRO-OPTIC
INTEGRATION
FOR
SCANNING
MAGNETOMETERS
.
.
125
5
CONCLUSIONS
AND
OUTLOOK
.
128
6
REFERENCES
.
129
2
QUANTUM
IMAGING
134
CORRELATED
PHOTON
PAIRS
PERFORM
"DIVISION
OF
LABOR"
ACROSS
WAVELENGTH
REGION
.
135
REFERENCES
.
140
QUANTUM
HOLOGRAPHY
WITH
UNDETECTED
LIGHT
.
141
1
FROM
CLASSICAL
TO
QUANTUM
HOLOGRAPHY
.
141
2
NONLINEAR
INTERFEROMETER
FOR
IMAGING
.
143
3
PHASE-SHIFTING
HOLOGRAPHY
.
145
4
QUANTUM
HOLOGRAPHY
WITH
UNDETECTED
LIGHT
.
147
5
NOISE
RESILIENCE
.
148
6
REFERENCES
.
151
QUANTUM
GHOST
IMAGING
WITH
ASYNCHRONOUS
DETECTION
.
.
153
1
INTRODUCTION
.
153
2
QUANTUM
GHOST
IMAGING
(QGI)
.
155
3
RESULTS
.
160
4
IMAGE
RECONSTRUCTION
.
161
5
RELEVANT
QUANTUM
BENEFITS
.
162
5.1
UNIFORM
ENERGY
DISTRIBUTION:
RELAXED
SAFETY
THRESHOLDS
.
.
162
5.2
INCOHERENT
SOURCE:
IMPROVED
IMAGE
QUALITY
.
163
5.3
INHERENT
RANDOMNESS:
NON-DETECTABILITY
AND
SUPERIOR
PROTECTION
.
163
6
CONCLUSIONS
AND
OUTLOOK
.
164
7
REFERENCES
.
165
QUANTUM
FOURIER
TRANSFORM
INFRARED
SPECTROSCOPY
.
167
1
INTRODUCTION
.
167
2
THE
QUANTUM
FOURIER
TRANSFORM
SPECTROMETER
.
169
2.1
CORRELATED
PHOTON
SOURCE
.
169
2.2
NONLINEAR
INTERFEROMETER
.
171
2.3
SPECTRAL
ANALYSIS
.
173
3
CONCLUSIONS
AND
OUTLOOK
.
178
4
REFERENCES
.
178
QUANTUM
IMAGING
WITH
UNDETECTED
PHOTONS
IN
THE
MID-INFRARED
.
181
1
QUANTUM
IMAGING
IN
NONLINEAR
INTERFEROMETERS
.
181
1.1
SPONTANEOUS
PARAMETRIC
DOWNCONVERSION.
SOURCES
FOR
CORRELATED
PHOTON
PAIRS
.
182
1.2
IMAGING
WITH
UNDETECTED
PHOTONS
IN
NONLINEAR
INTERFEROMETERS
.
183
1.3
STATE-OF-THE-ART
QUANTUM
IMAGING
IN
THE
MID-INFRARED
.
.
184
2
MIR
QUANTUM
IMAGING
WITH
LARGE
APERTURE
CRYSTALS
IN
LONG-PASS
INTERFEROMETER
CONFIGURATION
.
185
2.1
DESIGN
CONSIDERATIONS
.
185
2.2
SETUP
AND
RESULTS
.
187
2.3
CONCLUSIONS
AND
OUTLOOK
.
190
3
REFERENCES
.
190
TERAHERTZ
SPECTROSCOPY
WITH
VISIBLE
PHOTONS
.
193
1
INTRODUCTION
.
194
2
GENERATION
OF
CORRELATED
TERAHERTZ-VISIBLE
PHOTON
PAIRS
.
195
3
TERAHERTZ
SPECTROSCOPY
WITH
VISIBLE
LIGHT
.
199
4
QUANTUM-INSPIRED
TERAHERTZ
SPECTROSCOPY
WITH
PULSED
SOURCES
.
202
5
CONCLUSIONS
AND
OUTLOOK
.
204
6
REFERENCES
.
205
3
QUANTUM
COMMUNICATION
210
QUANTUM
COMMUNICATION:
SECURE
COMMUNICATION
BY
QUANTUM
KEY
DISTRIBUTION
.
211
QUANTUM
COMMUNICATION
SYSTEMS
AND
PROTOCOLS
.
213
1
MOTIVATION
.
213
2
QUANTUM
COMMUNICATION
SYSTEMS
FOR
OPTICAL
NETWORKS
.
215
2.1
MASSIVELY
MULTIPLEXED
QUANTUM
CHANNELS
.
215
2.2
SIMULTANEOUS
TRANSMISSION
OF
QUANTUM
AND
CLASSICAL
CHANNELS
.
217
2.3
A
REAL-TIME
EXPERIMENTATION
QKD
PLATFORM
FOR
QUANTUM-SECURE
TELECOM
INFRASTRUCTURES
.
218
3
CONCLUSIONS
AND
OUTLOOK
.
223
4
REFERENCES
.
223
SATELLITE-BASED
ENTANGLEMENT
COMMUNICATION
AT
FRAUNHOFER
IOF
.
225
1
ENTANGLEMENT-BASED
QUANTUM
COMMUNICATION
IN
SPACE
.
.
.
225
2
BASIC
LINK
CONSIDERATIONS
.
227
3
HIGH
PERFORMANT
ENTANGLED
PHOTON
SOURCES
.
230
4
CONCLUSIONS
AND
OUTLOOK
.
233
5
REFERENCES
.
234
PHOTONIC
COMPONENTS
FOR
QUANTUM
TECHNOLOGIES
.
235
1
INTRODUCTION
.
235
2
ACTIVE
COMPONENTS
FOR
INTEGRATION
.
236
2.1
SINGLE-PHOTON
AVALANCHE
DETECTORS
.
237
2.2
INP-BASED
PHOTONIC
INTEGRATED
CIRCUITS
.
239
3
HYBRID
INTEGRATION
.
241
3.1
POLYBOARD
PLATFORM
.
242
3.2
MICRO-OPTICAL
BENCH
.
246
4
CONCLUSIONS
AND
OUTLOOK
.
249
5
REFERENCES
.
249
MODULAR
NANOELECTRONICS
FOR
QUANTUM
COMMUNICATION
.
251
1
MOTIVATION
.
251
2
MODULAR
ELECTRONICS
PLATFORM
.
253
2.1
CHIPLET
TECHNOLOGY
.
254
2.2
DIGITAL
SIGNAL
PROCESSORS
.
256
2.3
ANALOG
DIGITAL
CONVERTER
.
257
2.4
DIGITAL
ANALOG
CONVERTER
.
259
2.5
TIME-TO-DIGITAL
CONVERTERS
.
259
2.6
FURTHER
DEVELOPMENT
OF
THE
CHIPLET
TOOLBOX
.
260
3
QKD
TEST
ENVIRONMENT
FOR
CIRCUIT
DEVELOPMENT
.
261
4
CONCLUSIONS
AND
OUTLOOK
.
263
5
REFERENCES
.
264
LOW-NOISE
QUANTUM
FREQUENCY
CONVERTERS
FOR
THE
QUANTUM
INTERNET
.
267
1
QUANTUM
INTERNET
.
268
1.1
QUANTUM
NETWORKS
.
269
1.2
THE
QUANTUM
INTERFACE
.
270
1.3
THE
QUANTUM
INTERNET
DEMONSTRATOR
PROJECT
ATQUTECH
.
271
2
QUANTUM
FREQUENCY
CONVERSION
.
272
2.1
PERFORMANCE
REQUIREMENTS
OF
A
QFC,
EVERY
PHOTON
COUNTS
.
272
2.2
WORKING
PRINCIPLE,
DESIGN
CHALLENGES,
AND
STATE
OF
THE
ART
.
273
2.3
NORA
-
A
NOISE-REDUCED
APPROACH
FOR
A
QFC
.
274
2.4
PROTOTYPING
AND
TESTING
OF
NORA
QFC
.
276
3
NEXT
STEPS
.
279
4
REFERENCES
.
280
4
QUANTUM
COMPUTING
284
INTRODUCTION
.
285
QUANTUM
COMPUTING
FROM
MATERIALS
TO
APPLICATION
.
291
1
SILICON
CARBIDE
-
A
PROMISING
MATERIAL
FOR
QUANTUM
COMPUTING
.
292
2
SIC
SEMICONDUCTOR
TECHNOLOGY
AND
SIMULATION
.
295
3
INTEGRATION
AND
MATERIAL
ASPECTS
FOR
QUANTUM
COMPUTING
.
298
4
QUANTUM
COMPUTING
FOR
SIMULATION
UND
OPTIMIZATION
.
301
5
CONCLUSIONS
AND
OUTLOOK
.
305
6
REFERENCES
.
306
LEVERAGING
MICROELECTRONICS
FOR
LARGE-SCALE
QUANTUM
COMPUTING
HARDWARE
.
309
1
INTRODUCTION
HARDWARE
FOR
QUANTUM
COMPUTING
.
310
1.1
QUBIT
PLATFORMS
-
A
TECHNOLOGIC
OVERVIEW
.
311
2
CHALLENGES
TOWARD
MEANINGFUL
SYSTEMS
.
312
3
CONCRETE
POTENTIAL
FOR
SEGMENTS
OF
THE
QUANTUM
COMPUTING
STACK
.
313
3.1
SUPERCONDUCTING
QUBITS
.
314
3.2
SPIN-BASED
QUANTUM
DOT
QUBITS
.
317
3.3
PHOTONIC
QUBITS
.
318
3.4
NEUTRAL
ATOMS
.
319
3.5
2D
AND
3D
INTEGRATION
.
320
3.6
CO-INTEGRATION
WITH
CMOS
LOGIC
.
321
4
CONCLUSIONS
AND
OUTLOOK
.
322
5
REFERENCES
.
323
ERROR
CHARACTERIZATION,
MITIGATION,
AND
CORRECTION
.
325
1
QUANTUM
GATE
ERROR
CHARACTERIZATION
.
325
1.1
FROM
PROCESS
TO
GATE
SET
TOMOGRAPHY
.
326
1.2
LONG-SEQUENCE
QUANTUM
PROCESS
TOMOGRAPHY
.
330
1.3
CROSSTALK
CHARACTERIZATION
.
331
2
ERROR
MITIGATION
.
332
3
QUANTUM
ERROR
CORRECTION
.
336
3.1
CLASSICAL
ERROR
CORRECTION
.
337
3.2
THREE-QUBIT
BITFLIP
CODE
.
338
3.3
THRESHOLD
THEOREM
OF
FAULT-TOLERANT
QUANTUM
COMPUTING
.
339
4
REFERENCES
.
340
QUANTUM
HPC
ALGORITHMS
AND
WORKFLOWS
.
343
1
MOTIVATION:
QUANTUM
COMPUTERS
AS
ACCELERATORS
OF
HPC
SYSTEMS
.
343
2
TECHNOLOGIES
AND
APPROACHES
.
344
3
HYBRID
SIMULATION
AT
THE
ALGORITHMIC
LEVEL
.
345
4
NISQ
QUANTUM
APPLICATIONS
.
347
5
TOWARD
HYBRID
HPC
/
QUANTUM
WORKFLOWS
.
349
6
CHARACTERIZATION
OF
HYBRID
WORKFLOWS
AND
ALGORITHMS
.
350
7
IMPORTANT
PARAMETERS
FOR
INTEGRATING
QC
INTO
HPC
SYSTEMS
.
351
8
CONCLUSIONS
AND
OUTLOOK
.
353
9
REFERENCES
.
354
QUANTUM
MACHINE
LEARNING
.
355
1
INTRODUCTION
.
355
2
WHAT
IS
MACHINE
LEARNING?
.
356
3
WHAT
IS
QUANTUM
COMPUTING?
.
357
4
WHAT
IS
QUANTUM
MACHINE
LEARNING?
.
359
5
CURRENT
LIMITATIONS
FOR
QML
.
363
6
SUGGESTIONS
FOR
QML
IN
THE
NISQ
ERA
.
367
7
CONCLUSIONS
AND
OUTLOOK
.
369
8
REFERENCES
.
370
QOMPILER:
INTEROPERABLE
AND
STANDARDIZABLE
QUANTUM
SOFTWARE
STACK
.
373
1
INTRODUCTION
.
374
2
PROGRESS
BEYOND
STATE
OF
THE
ART
.
375
3
THE
NEED
FOR
A
STANDARDIZED
SOFTWARE
STACK
.
377
4
QRISP:
QUANTUM
HIGH-LEVEL
PROGRAMMING
LANGUAGE
.
379
5
STANDARDIZABLE
INTERFACE
.
381
6
EXPLOITATION
PATHS
.
383
7
CONCLUSIONS
AND
OUTLOOK
.
384
8
REFERENCES
.
385
APPROACHES
TO
THE
STRUCTURED
DEVELOPMENT,
TEST,
AND
OPERATION
OF
QUANTUM-BASED
ICT
SYSTEMS
.
387
1
INTRODUCTION
.
388
2
RELATED
WORK
.
388
3
QUANTUM
DEVOPS
.
389
4
OVERVIEW
OF
TOOLS
FOR
QUANTUM
DEVOPS
.
392
4.1
TOOLS
FOR
THE
DEV
SUBCYCLE
.
393
4.2
TOOLS
FOR
THE
OPS
SUBCYCLE
.
394
4.3
OVERALL
DEVOPS
AUTOMATION
.
395
5
BENCHMARKING
FOR
QUANTUM
DEVOPS
.
396
5.1
TRANSPILATION
AND
QUANTUM
CIRCUIT
OPTIMIZATION
.
397
5.2
SIMULATIONS
UNDER
SUITABLE
NOISE
MODELS
.
398
5.3
QPU
BACKEND
DECISION
.
398
5.4
EXECUTION
ON
THE
QPU
.
399
6
USE
CASES
.
400
6.1
TRAVELING
SALESMAN
PROBLEM
IN
QUANTUM
DEVOPS
.
400
6.2
VARIATIONAL
QUANVOLUTIONAL
NEURAL
NETWORKS
WITH
ENHANCED
IMAGE
ENCODING
FOR
IMAGE
CLASSIFICATION
.
403
7
CONCLUSIONS
AND
OUTLOOK
.
405
8
REFERENCES
.
406
FRAUNHOFER
COMPETENCE
NETWORK
QUANTUM
COMPUTING
.
409
1
FRAUNHOFER
COMPETENCE
NETWORK
QUANTUM
COMPUTING:
AIM
AND
STRUCTURE
.
409
2
FRAUNHOFER
AS
AN
ENABLER
FOR
RESEARCH
AND
INDUSTRY
.
411
3
CURRENT
PROJECTS
USING
THE
IBM
QUANTUM
SYSTEM
ONE
.
412
4
CONCLUSIONS
AND
OUTLOOK
.
414
5
REFERENCES
.
415
LIST
OF
AUTHORS
.
417 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Neugebauer, Reimund 1953- |
author2_role | edt |
author2_variant | r n rn |
author_GND | (DE-588)124315828 |
author_facet | Neugebauer, Reimund 1953- |
building | Verbundindex |
bvnumber | BV048533321 |
ctrlnum | (OCoLC)1346655189 (DE-599)DNB1268946486 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02697nam a22006738c 4500</leader><controlfield tag="001">BV048533321</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221121 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">221026s2022 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,N40</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1268946486</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3839618509</subfield><subfield code="9">3-8396-1850-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783839618509</subfield><subfield code="c">hbk: EUR 129.00 (DE), EUR 132.70 (AT), CHF 198.70 (freier Preis)</subfield><subfield code="9">978-3-8396-1850-9</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783839618509</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: fhg-zv_6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1346655189</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1268946486</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">530</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum Technologies</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Stuttgart, Germany</subfield><subfield code="b">Fraunhofer Verlag</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">425 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">21 cm x 14.8 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Fraunhofer-Forschungsfokus</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sensor</subfield><subfield code="0">(DE-588)4038824-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantencomputer</subfield><subfield code="0">(DE-588)4533372-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantentechnologie</subfield><subfield code="0">(DE-588)1197831657</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenkommunikation</subfield><subfield code="0">(DE-588)4596977-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Applied optics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Communications engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Entwicklungsingenieure</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Industrial applications</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Physiker</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quantum field theory</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quantum mechanics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quantum physics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Scientific research</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Technological innovation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Technologiemanager</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantentechnologie</subfield><subfield code="0">(DE-588)1197831657</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Quantenkommunikation</subfield><subfield code="0">(DE-588)4596977-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Quantencomputer</subfield><subfield code="0">(DE-588)4533372-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Sensor</subfield><subfield code="0">(DE-588)4038824-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Neugebauer, Reimund</subfield><subfield code="d">1953-</subfield><subfield code="0">(DE-588)124315828</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Fraunhofer IRB-Verlag</subfield><subfield code="0">(DE-588)4786605-6</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-8396-1855-4</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="q">text/html</subfield><subfield code="u">http://deposit.dnb.de/cgi-bin/dokserv?id=fdda3462040d40f5be374fb0affdb105&prov=M&dok_var=1&dok_ext=htm</subfield><subfield code="3">Inhaltstext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033910004&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033910004</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20220927</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV048533321 |
illustrated | Illustrated |
index_date | 2024-07-03T20:52:53Z |
indexdate | 2024-07-10T09:40:46Z |
institution | BVB |
institution_GND | (DE-588)4786605-6 |
isbn | 3839618509 9783839618509 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033910004 |
oclc_num | 1346655189 |
open_access_boolean | |
owner | DE-29T |
owner_facet | DE-29T |
physical | 425 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Fraunhofer Verlag |
record_format | marc |
series2 | Fraunhofer-Forschungsfokus |
spelling | Quantum Technologies Stuttgart, Germany Fraunhofer Verlag [2022] 425 Seiten Illustrationen, Diagramme 21 cm x 14.8 cm txt rdacontent n rdamedia nc rdacarrier Fraunhofer-Forschungsfokus Sensor (DE-588)4038824-4 gnd rswk-swf Quantencomputer (DE-588)4533372-5 gnd rswk-swf Quantentechnologie (DE-588)1197831657 gnd rswk-swf Quantenkommunikation (DE-588)4596977-2 gnd rswk-swf Applied optics Communications engineering Electronic engineering Entwicklungsingenieure Industrial applications Physiker Quantum field theory Quantum mechanics Quantum physics Scientific research Technological innovation Technologiemanager (DE-588)4143413-4 Aufsatzsammlung gnd-content Quantentechnologie (DE-588)1197831657 s Quantenkommunikation (DE-588)4596977-2 s Quantencomputer (DE-588)4533372-5 s Sensor (DE-588)4038824-4 s DE-604 Neugebauer, Reimund 1953- (DE-588)124315828 edt Fraunhofer IRB-Verlag (DE-588)4786605-6 pbl Erscheint auch als Online-Ausgabe 978-3-8396-1855-4 X:MVB text/html http://deposit.dnb.de/cgi-bin/dokserv?id=fdda3462040d40f5be374fb0affdb105&prov=M&dok_var=1&dok_ext=htm Inhaltstext DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033910004&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20220927 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Quantum Technologies Sensor (DE-588)4038824-4 gnd Quantencomputer (DE-588)4533372-5 gnd Quantentechnologie (DE-588)1197831657 gnd Quantenkommunikation (DE-588)4596977-2 gnd |
subject_GND | (DE-588)4038824-4 (DE-588)4533372-5 (DE-588)1197831657 (DE-588)4596977-2 (DE-588)4143413-4 |
title | Quantum Technologies |
title_auth | Quantum Technologies |
title_exact_search | Quantum Technologies |
title_exact_search_txtP | Quantum Technologies |
title_full | Quantum Technologies |
title_fullStr | Quantum Technologies |
title_full_unstemmed | Quantum Technologies |
title_short | Quantum Technologies |
title_sort | quantum technologies |
topic | Sensor (DE-588)4038824-4 gnd Quantencomputer (DE-588)4533372-5 gnd Quantentechnologie (DE-588)1197831657 gnd Quantenkommunikation (DE-588)4596977-2 gnd |
topic_facet | Sensor Quantencomputer Quantentechnologie Quantenkommunikation Aufsatzsammlung |
url | http://deposit.dnb.de/cgi-bin/dokserv?id=fdda3462040d40f5be374fb0affdb105&prov=M&dok_var=1&dok_ext=htm http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033910004&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT neugebauerreimund quantumtechnologies AT fraunhoferirbverlag quantumtechnologies |