The cohomology of commutative semigroups: an overview
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cham
Springer
2022
|
Schriftenreihe: | Lecture notes in mathematics
Volume 2307 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xviii, 177 Seiten Diagramme |
ISBN: | 9783031082115 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV048527994 | ||
003 | DE-604 | ||
005 | 20221107 | ||
007 | t | ||
008 | 221024s2022 |||| |||| 10||| eng d | ||
020 | |a 9783031082115 |9 978-3-031-08211-5 | ||
024 | 7 | |a 10.1007/978-3-031-08212-2 |2 doi | |
035 | |a (OCoLC)1347779962 | ||
035 | |a (DE-599)KXP1819009041 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-188 |a DE-83 |a DE-824 | ||
084 | |a SI 850 |0 (DE-625)143199: |2 rvk | ||
084 | |a 18G35 |2 msc | ||
084 | |a 20Mxx |2 msc | ||
100 | 1 | |a Grillet, Pierre A. |d 1941- |0 (DE-588)133555186 |4 aut | |
245 | 1 | 0 | |a The cohomology of commutative semigroups |b an overview |c Pierre Antoine Grillet |
264 | 1 | |a Cham |b Springer |c 2022 | |
300 | |a xviii, 177 Seiten |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Lecture notes in mathematics |v Volume 2307 | |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-031-08212-2 |w (DE-604)BV048495914 |
830 | 0 | |a Lecture notes in mathematics |v Volume 2307 |w (DE-604)BV000676446 |9 2307 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033904775&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033904775 |
Datensatz im Suchindex
_version_ | 1804184519185530880 |
---|---|
adam_text | Contents
Oe 1
1 1 The Congrmence H neeessenseenenenesnennnneensnnnnntnennnn 1
VAD Basics ccc cece ceecceccesecuscuuceusecnsecatseaseencuenss 1
112 Commutative Group Coextensions ceceececececee 3
1 2 COomstruction 20 ccc eeccceeccucseuescecsscecseseeseussenecencecs 4
121 Schreier’s Method ccccnsueneanne nenn 4
122 Split Coextensions ceeeeenneenenenenensseneenen seen a)
123 Enter Cohomology cc0ccccsccecececeesseccusseceucces 7
124 Finite Semigroups ccc cccceceseeseveeeceuccuceeccs 7
2 Beck Cohomology 0c cccccceeeeecescecseseceeseccsenecceeees 9
2 1 General Beck Cohomology 00 cccecceccecsescesecesecccecseces 9
211 Simple Cohomology ccccccseccseecceceuecceveccues 9
212 Abelian Group Objects 0 0 ceceseceseeececeeeecues 10
213 Objects Over Soo eee cecccccccecueccssueeceueceeceeseusne 1
214 Beck Cohomology cccccscccescusecceeceuuseeucuense 12
215 Main Properties 00 002 cece cccceceecscuesecseueseceueseueaes 13
216 Beck Extensions ccccceccceccusecaececececueecuece 13
2 2 Commutative Semigroups 000 cc0cccecccceseceesecsauescereces 14
221 Commutative Semigroups Over S 00 cceecceseeeceuesee 14
222 Abelian Group Objects Over S nennennn 15
2 2 3, Beck Extensions of So 0 0 cccccceccceseceusvessaesserncens 17
2 3 Beck Cohomology of Commutative Semigroups 0 00065 18
231 The ‘Free Commutative Semigroup’ Adjunction 18
232 The ‘Free Commutative Semigroup’ Comonad 19
2 3 3) Cochains 00 0 csccecceceneceseesesoucusssteeeceerausaseans 20
234 Cohomology 0cccseceeeeeeesenceecsatsceuseuseeenes 22
235 Properties 000 ccsceeseeeeceuceeeeeseaeeceseeeanveenenss 25
3 Symmetric Cohomology 0: 0:000cccccsesscsssssssesssrseseetensees 27
3 1 Definition 0 0 00 eeecec ccc eeeceeccceueeccuecssaececaeecsesenes 27
311 Cochains neseeenassstenssenenensnonsnnnnennnnnenerennenn 28
Contents
312 Symmetric Cochains enter nn 5
313 Symmetric Cohomology eeenenneneernnnn sent 9
314 An Example nennen ess %0
3 2 Comparison with Beck Cohomology - - --+-ssceeeeeretereee reer ees 2
32 1 Dimension 1 een testen 32
32 2 Dimension 2 een reset 32
323 Dimensions 3 and 4 een ersten ener eens 37
3 3 Main Properties een essen sense nennen 38
3 4 Normalization ee eeneeeeeeeneeneeeneenenee enter 38
341 Dimension 2 cceceeerer cere cnet rece ene e tee reeset et eca ns 39
342 Dimension 3 -ueneeeeneenennessenenen nennen nenn 4
Calvo-Cegarra Cohomology m uneeenennnererennnnennnnen nenn 45
4 1 Small Categories eeeeeneenenenener nennen sense near 45
42 Cohomology of Simplicial Sets 2- 04 4sHsceenenenennnnnnnnen 46
421 Definition ccccceeecce cece ects reese eset ee neeeneeee 46
422 Cochains : ccc cee ence eee enon eens eens een eeeeeennneneenas 47
423 The Classifying Simplicial Set 00 cc cee ce eee e seen ees 48
4 3, Cohomology of Commutative Semigroups 0:ccseeeceeees 49
431 The Double Classifying Simplicial Set - 2200220 49
432 Cochains eueesensennensennsenseenensenseneennenennennenn nenn Sl
4 4 Extended Cochains ccccccescccuccecuecceceeeecsceucecaenes 52
44] Definition 0 0 ccc ccc cceeeeccenaccvecueecunuseeuns 52
442 Comparison with Symmetric Cohomology 02 05 54
44 3 An Example oo cc ccccceccecececceececeusuveesucusessucs 55
4 5 Properties 2 0 cece cece ceeceseeeeccuceceuceccuecuuseeecsenereccs 57
The Third Cohomology Group nn 59
3 1 Groupoids nannnnnnenennennnnnnnnnnnnnnnnnn nn 59
SAL Groupoids 0 cee nennen 59
512 Monoidal Groupoids 00 ececeeccceeeeeeceeec ccc 60
513 Reduction cnennnnnnnn anne 63
31 4 TheBase nn 64
5 2 Symmetric B-CocyCleS oe ctee cece 66
521 Cocycle Objects ee 2
522 Morphisms meets ©
5 3 Classification tsetse
53 1 Isomorphising irre 73
53 2 Equivalence 00sec 73
53 3 Lone Cocycles ites 75
5 4 Braided Groupoids a tits 76
S41 Definition titties 78
542 Reduction Te itittsseeceeseeeee 78
5 43 The Base etc ee cee eeeerens io
544 Extended Cosycic TTT ocean ete etter es ene reece ees
5 45 Classification y Objects TTT eee eee e eee een esse cnseven ene 82
Contents
xi
6 The Overpath Method 0 0 cece cece ecco nee ene eee e eee teaees 87
6 1 Paths and Overpaths 222uessensnessnerennnsnenennenenennen nenn 87
611 Free Commutative Monoids cccee eee eee eee ener ene 87
612 Comgruences 0c cece cece e eee eee e eee nee eee ennes 88
613 Paths 0 0 cece cece cece een e cena eee e nest eee eneenee anes 89
614 Overpaths 2 0 cece cece ence ence nee ne rete tee eeeneeeneneene 91
6 2 Main Result 0000 ccc cce cece e nee ee nee e nee ee eee seee ceases enteaeans 91
621 Minimal Cocycles 2000 ccc ccc eee c cece eee rece eee eneenee 92
622 MainResult cuesesnsnnnuenenenssnenenenensnnensennenn 93
623 Examples 2orneseeneraensnnsanenannennnnennenenennenen 94
624 Semigroups with One Relator 0 :eceee scene eee enereee 96
6 3 Other Results 0000e cece cece ene rec en ence eee een ene eeeet enone 98
631 Branching -202@nraraneonenenenenneneennen sonen en nenn 98
632 Relations 2zscseennennennennenenenssrennenneneennonenene 100
633 Partially Free Semigroups : c2ceeeeeereeeeeenseteenee 103
634 Nilmonoids cccce ce ceas see c eens eee eeeeee ent ae tenes nene res 104
635 Semigroups with Zero Cohomology ---- - :eeeeeereeeee 105
7 Symmetric Chains 2000 00 cc ccc ce cece eee ee eee e recent eet een enea setae 109
7 1 Symmetric Mappings 0 cece ese e cece eee ee eee eee eeenene ee 109
711 Symmetry 00 e rere nen ee eres ene eee 109
TAQ BAaS@S cccccececeeee eee ne beets ea teen ences eens eneeneneeneeees 110
7 2 Chain Groups cccccecec cece een ence renee Banneesennensnnansnenen 113
721 Definition -usessrsanssnensessenenenennesen nennen nann 113
722 Properties eeeeesenneneenanenenennensnnnnnenn san snn ern 114
723 Symmetrie n-chains eenseseeneneennenenennnenennennnne ran 115
7 3 Chain FUumctors 0 0s cece ee eee e eens teen rene een eet ee ent enenes 117
731 Thin Chain Punctors 0 ceceee cent ee nent eee re nee eeeee 117
732 General Chain Functors 2essseessnnereeenenneneenna nn nen 119
7 4 Semiconstant Functors cece cece eee eee cece eect enna e ene ees 121
741 Definition eusessererensereorsnseneneonnnnnenennen sonen ns 122
742 Chain Groups 0 cccece cece eet ee reer ee nent etree eee ene 123
TAB Properties ccccce cece erence eee teen ene ee eee en et eee ee eee 124
Os (0) 100) 0)4 ee 124
TAS Cohomology : ccccerecee cece eee eee ne eee n sees een ea tenes 126
8 Inheritance cessesssesereenennennennsnenenesnnnnn nennen onen se sn nenn 129
8 1 The Universal Coboundary cc cece eect cere ee esee ene nenea es 129
811 Symmetry Properties - 2 0see cere eee e een teen renee neces 129
812 The Universal Coboundary cece cece eee ne enone ene eee 130
8 13 The Group D oo ccc cece eee terete terete nee e ene eeet eres 131
8 2 One Equality Between Variables 2:eeseeeeeneeet ener en eens 134
83 Result cccecceccececeeee scene sense nese seen erences eres en eneena ene ees 135
83 1 Method ccccccccec cesses eee een en eneeeeneneeenene eee en eee 136
832 Order 5 cccccceceeetecet eee eee ee eens eee ac nena eee ee et ene eaae tes 136
833 Other Orders ccccecene rene ee eee rene ec ener eee nee er eaten eee 137
Contents
xii
Kunsenunenseseenssenunnenune 1
9 Appendixes errs ee 129
9 1 Extensions nn 139
911 Group Extensions debe ee ee eee eee nena ees Ia
912 Rédei Extensions :0 eserereeesenee eres eee eres een ea eens
913 The Leech Categories cceeeeere esse ener eet rene eeee 141
O14 CoSets cccceccce eter eee e eee eens e nee tere eee erat east ens 143
915 Group Coextensions seeeeeee cence teste eee ee eens 144
916 Congruences Contained in H sc ceeeeseeee entre eee e eens 146
917 Leech Coextensions 00 e ccc c eee cece recente ene eeeenes 149
918 Leech Cohomology 0 ccc cee eeee eee e eee e eee eeeneeees 151
9 2 Monads and Algebras -- umesenenensensnsnsnnnssenennannenunnen 152
921 Adjunctions neneneeesenennsnnesnnnenseensennnensennennnnennenenn 152
922 Momads ccc ccc cce cere ceeeeeee neers ceeeeeeeaeeeespanneees 153
923 Algebras cece cece eee e nee eee eeeeeeaeeeevuaeeenenas 154
9 3 Simplicial Objects 0 0 ccc cccec eee eeeneseesseuaeuevaeeens 155
931 Simplicial Sets 0200 ccc ec cc cccecceceeeeeecucuseueneeaeess 155
932 The Simplicial Category 0 cccccecccccesecueaeeeeuenes 156
933 The Classifying Simplicial Set 0 00 0c cececceceecees 158
934 Cohomology ccccccecscecceccccecescuseescuseecereecees 159
9 4 Monoidal Categories cccececcececccceceeeeseecuuececsceeccscees 159
941 Strict Monoidal Categories nn 160
942 General Monoidal Categories nn 160
943 Monoidal Functors uueennanannannnnnen 161
944 Braided Monoidal Categories nennen 163
95 Modules nnnnnnnnnnnnnnnnennunnnnennnannnnnn nen 165
95 1 S-Modules nnnannnnnnnanannnunnnnnnannnnnn en 165
95 2 Quasiconstant Functors uuununuannunennnnnn nn 166
933 Conclusions 0 0 eect tee 166
References cece ceeccecsssttsessnsesisaticsseteeeeeccec 167
Index
|
adam_txt |
Contents
Oe 1
1 1 The Congrmence H neeessenseenenenesnennnneensnnnnntnennnn 1
VAD Basics ccc cece ceecceccesecuscuuceusecnsecatseaseencuenss 1
112 Commutative Group Coextensions ceceececececee 3
1 2 COomstruction 20 ccc eeccceeccucseuescecsscecseseeseussenecencecs 4
121 Schreier’s Method ccccnsueneanne nenn 4
122 Split Coextensions ceeeeenneenenenenensseneenen seen a)
123 Enter Cohomology cc0ccccsccecececeesseccusseceucces 7
124 Finite Semigroups ccc cccceceseeseveeeceuccuceeccs 7
2 Beck Cohomology 0c cccccceeeeecescecseseceeseccsenecceeees 9
2 1 General Beck Cohomology 00 cccecceccecsescesecesecccecseces 9
211 Simple Cohomology ccccccseccseecceceuecceveccues 9
212 Abelian Group Objects 0 0 ceceseceseeececeeeecues 10
213 Objects Over Soo eee cecccccccecueccssueeceueceeceeseusne 1
214 Beck Cohomology cccccscccescusecceeceuuseeucuense 12
215 Main Properties 00 002 cece cccceceecscuesecseueseceueseueaes 13
216 Beck Extensions ccccceccceccusecaececececueecuece 13
2 2 Commutative Semigroups 000 cc0cccecccceseceesecsauescereces 14
221 Commutative Semigroups Over S 00 cceecceseeeceuesee 14
222 Abelian Group Objects Over S nennennn 15
2 2 3, Beck Extensions of So 0 0 cccccceccceseceusvessaesserncens 17
2 3 Beck Cohomology of Commutative Semigroups 0 00065 18
231 The ‘Free Commutative Semigroup’ Adjunction 18
232 The ‘Free Commutative Semigroup’ Comonad 19
2 3 3) Cochains 00 0 csccecceceneceseesesoucusssteeeceerausaseans 20
234 Cohomology 0cccseceeeeeeesenceecsatsceuseuseeenes 22
235 Properties 000 ccsceeseeeeceuceeeeeseaeeceseeeanveenenss 25
3 Symmetric Cohomology 0: 0:000cccccsesscsssssssesssrseseetensees 27
3 1 Definition 0 0 00 eeecec ccc eeeceeccceueeccuecssaececaeecsesenes 27
311 Cochains neseeenassstenssenenensnonsnnnnennnnnenerennenn 28
Contents
312 Symmetric Cochains enter nn 5
313 Symmetric Cohomology eeenenneneernnnn sent 9
314 An Example nennen ess %0
3 2 Comparison with Beck Cohomology - - --+-ssceeeeeretereee reer ees 2
32 1 Dimension 1 een testen 32
32 2 Dimension 2 een reset 32
323 Dimensions 3 and 4 een ersten ener eens 37
3 3 Main Properties een essen sense nennen 38
3 4 Normalization ee eeneeeeeeeneeneeeneenenee enter 38
341 Dimension 2 cceceeerer cere cnet rece ene e tee reeset et eca ns 39
342 Dimension 3 -ueneeeeneenennessenenen nennen nenn 4
Calvo-Cegarra Cohomology m uneeenennnererennnnennnnen nenn 45
4 1 Small Categories eeeeeneenenenener nennen sense near 45
42 Cohomology of Simplicial Sets 2- 04 4sHsceenenenennnnnnnnen 46
421 Definition ccccceeecce cece ects reese eset ee neeeneeee 46
422 Cochains : ccc cee ence eee enon eens eens een eeeeeennneneenas 47
423 The Classifying Simplicial Set 00 cc cee ce eee e seen ees 48
4 3, Cohomology of Commutative Semigroups 0:ccseeeceeees 49
431 The Double Classifying Simplicial Set - 2200220 49
432 Cochains eueesensennensennsenseenensenseneennenennennenn nenn Sl
4 4 Extended Cochains ccccccescccuccecuecceceeeecsceucecaenes 52
44] Definition 0 0 ccc ccc cceeeeccenaccvecueecunuseeuns 52
442 Comparison with Symmetric Cohomology 02 05 54
44 3 An Example oo cc ccccceccecececceececeusuveesucusessucs 55
4 5 Properties 2 0 cece cece ceeceseeeeccuceceuceccuecuuseeecsenereccs 57
The Third Cohomology Group nn 59
3 1 Groupoids nannnnnnenennennnnnnnnnnnnnnnnnn nn 59
SAL Groupoids 0 cee nennen 59
512 Monoidal Groupoids 00 ececeeccceeeeeeceeec ccc 60
513 Reduction cnennnnnnnn anne 63
31 4 TheBase nn 64
5 2 Symmetric B-CocyCleS oe ctee cece 66
521 Cocycle Objects ee 2
522 Morphisms meets ©
5 3 Classification tsetse
53 1 Isomorphising irre 73
53 2 Equivalence 00sec 73
53 3 Lone Cocycles ites 75
5 4 Braided Groupoids a tits 76
S41 Definition titties 78
542 Reduction Te itittsseeceeseeeee 78
5 43 The Base etc ee cee eeeerens io
544 Extended Cosycic TTT ocean ete etter es ene reece ees
5 45 Classification y Objects TTT eee eee e eee een esse cnseven ene 82
Contents
xi
6 The Overpath Method 0 0 cece cece ecco nee ene eee e eee teaees 87
6 1 Paths and Overpaths 222uessensnessnerennnsnenennenenennen nenn 87
611 Free Commutative Monoids cccee eee eee eee ener ene 87
612 Comgruences 0c cece cece e eee eee e eee nee eee ennes 88
613 Paths 0 0 cece cece cece een e cena eee e nest eee eneenee anes 89
614 Overpaths 2 0 cece cece ence ence nee ne rete tee eeeneeeneneene 91
6 2 Main Result 0000 ccc cce cece e nee ee nee e nee ee eee seee ceases enteaeans 91
621 Minimal Cocycles 2000 ccc ccc eee c cece eee rece eee eneenee 92
622 MainResult cuesesnsnnnuenenenssnenenenensnnensennenn 93
623 Examples 2orneseeneraensnnsanenannennnnennenenennenen 94
624 Semigroups with One Relator 0 :eceee scene eee enereee 96
6 3 Other Results 0000e cece cece ene rec en ence eee een ene eeeet enone 98
631 Branching -202@nraraneonenenenenneneennen sonen en nenn 98
632 Relations 2zscseennennennennenenenssrennenneneennonenene 100
633 Partially Free Semigroups : c2ceeeeeereeeeeenseteenee 103
634 Nilmonoids cccce ce ceas see c eens eee eeeeee ent ae tenes nene res 104
635 Semigroups with Zero Cohomology ---- - :eeeeeereeeee 105
7 Symmetric Chains 2000 00 cc ccc ce cece eee ee eee e recent eet een enea setae 109
7 1 Symmetric Mappings 0 cece ese e cece eee ee eee eee eeenene ee 109
711 Symmetry 00 e rere nen ee eres ene eee 109
TAQ BAaS@S cccccececeeee eee ne beets ea teen ences eens eneeneneeneeees 110
7 2 Chain Groups cccccecec cece een ence renee Banneesennensnnansnenen 113
721 Definition -usessrsanssnensessenenenennesen nennen nann 113
722 Properties eeeeesenneneenanenenennensnnnnnenn san snn ern 114
723 Symmetrie n-chains eenseseeneneennenenennnenennennnne ran 115
7 3 Chain FUumctors 0 0s cece ee eee e eens teen rene een eet ee ent enenes 117
731 Thin Chain Punctors 0 ceceee cent ee nent eee re nee eeeee 117
732 General Chain Functors 2essseessnnereeenenneneenna nn nen 119
7 4 Semiconstant Functors cece cece eee eee cece eect enna e ene ees 121
741 Definition eusessererensereorsnseneneonnnnnenennen sonen ns 122
742 Chain Groups 0 cccece cece eet ee reer ee nent etree eee ene 123
TAB Properties ccccce cece erence eee teen ene ee eee en et eee ee eee 124
Os (0) 100) 0)4 ee 124
TAS Cohomology : ccccerecee cece eee eee ne eee n sees een ea tenes 126
8 Inheritance cessesssesereenennennennsnenenesnnnnn nennen onen se sn nenn 129
8 1 The Universal Coboundary cc cece eect cere ee esee ene nenea es 129
811 Symmetry Properties - 2 0see cere eee e een teen renee neces 129
812 The Universal Coboundary cece cece eee ne enone ene eee 130
8 13 The Group D oo ccc cece eee terete terete nee e ene eeet eres 131
8 2 One Equality Between Variables 2:eeseeeeeneeet ener en eens 134
83 Result cccecceccececeeee scene sense nese seen erences eres en eneena ene ees 135
83 1 Method ccccccccec cesses eee een en eneeeeneneeenene eee en eee 136
832 Order 5 cccccceceeetecet eee eee ee eens eee ac nena eee ee et ene eaae tes 136
833 Other Orders ccccecene rene ee eee rene ec ener eee nee er eaten eee 137
Contents
xii
Kunsenunenseseenssenunnenune 1
9 Appendixes errs ee 129
9 1 Extensions nn 139
911 Group Extensions debe ee ee eee eee nena ees Ia
912 Rédei Extensions :0 eserereeesenee eres eee eres een ea eens
913 The Leech Categories cceeeeere esse ener eet rene eeee 141
O14 CoSets cccceccce eter eee e eee eens e nee tere eee erat east ens 143
915 Group Coextensions seeeeeee cence teste eee ee eens 144
916 Congruences Contained in H sc ceeeeseeee entre eee e eens 146
917 Leech Coextensions 00 e ccc c eee cece recente ene eeeenes 149
918 Leech Cohomology 0 ccc cee eeee eee e eee e eee eeeneeees 151
9 2 Monads and Algebras -- umesenenensensnsnsnnnssenennannenunnen 152
921 Adjunctions neneneeesenennsnnesnnnenseensennnensennennnnennenenn 152
922 Momads ccc ccc cce cere ceeeeeee neers ceeeeeeeaeeeespanneees 153
923 Algebras cece cece eee e nee eee eeeeeeaeeeevuaeeenenas 154
9 3 Simplicial Objects 0 0 ccc cccec eee eeeneseesseuaeuevaeeens 155
931 Simplicial Sets 0200 ccc ec cc cccecceceeeeeecucuseueneeaeess 155
932 The Simplicial Category 0 cccccecccccesecueaeeeeuenes 156
933 The Classifying Simplicial Set 0 00 0c cececceceecees 158
934 Cohomology ccccccecscecceccccecescuseescuseecereecees 159
9 4 Monoidal Categories cccececcececccceceeeeseecuuececsceeccscees 159
941 Strict Monoidal Categories nn 160
942 General Monoidal Categories nn 160
943 Monoidal Functors uueennanannannnnnen 161
944 Braided Monoidal Categories nennen 163
95 Modules nnnnnnnnnnnnnnnnennunnnnennnannnnnn nen 165
95 1 S-Modules nnnannnnnnnanannnunnnnnnannnnnn en 165
95 2 Quasiconstant Functors uuununuannunennnnnn nn 166
933 Conclusions 0 0 eect tee 166
References cece ceeccecsssttsessnsesisaticsseteeeeeccec 167
Index |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Grillet, Pierre A. 1941- |
author_GND | (DE-588)133555186 |
author_facet | Grillet, Pierre A. 1941- |
author_role | aut |
author_sort | Grillet, Pierre A. 1941- |
author_variant | p a g pa pag |
building | Verbundindex |
bvnumber | BV048527994 |
classification_rvk | SI 850 |
ctrlnum | (OCoLC)1347779962 (DE-599)KXP1819009041 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01460nam a2200361 cb4500</leader><controlfield tag="001">BV048527994</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221107 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">221024s2022 |||| |||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783031082115</subfield><subfield code="9">978-3-031-08211-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-031-08212-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1347779962</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1819009041</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-824</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 850</subfield><subfield code="0">(DE-625)143199:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">18G35</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">20Mxx</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Grillet, Pierre A.</subfield><subfield code="d">1941-</subfield><subfield code="0">(DE-588)133555186</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The cohomology of commutative semigroups</subfield><subfield code="b">an overview</subfield><subfield code="c">Pierre Antoine Grillet</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 177 Seiten</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">Volume 2307</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-031-08212-2</subfield><subfield code="w">(DE-604)BV048495914</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in mathematics</subfield><subfield code="v">Volume 2307</subfield><subfield code="w">(DE-604)BV000676446</subfield><subfield code="9">2307</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033904775&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033904775</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV048527994 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:51:29Z |
indexdate | 2024-07-10T09:40:37Z |
institution | BVB |
isbn | 9783031082115 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033904775 |
oclc_num | 1347779962 |
open_access_boolean | |
owner | DE-188 DE-83 DE-824 |
owner_facet | DE-188 DE-83 DE-824 |
physical | xviii, 177 Seiten Diagramme |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Springer |
record_format | marc |
series | Lecture notes in mathematics |
series2 | Lecture notes in mathematics |
spelling | Grillet, Pierre A. 1941- (DE-588)133555186 aut The cohomology of commutative semigroups an overview Pierre Antoine Grillet Cham Springer 2022 xviii, 177 Seiten Diagramme txt rdacontent n rdamedia nc rdacarrier Lecture notes in mathematics Volume 2307 (DE-588)1071861417 Konferenzschrift gnd-content Erscheint auch als Online-Ausgabe 978-3-031-08212-2 (DE-604)BV048495914 Lecture notes in mathematics Volume 2307 (DE-604)BV000676446 2307 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033904775&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Grillet, Pierre A. 1941- The cohomology of commutative semigroups an overview Lecture notes in mathematics |
subject_GND | (DE-588)1071861417 |
title | The cohomology of commutative semigroups an overview |
title_auth | The cohomology of commutative semigroups an overview |
title_exact_search | The cohomology of commutative semigroups an overview |
title_exact_search_txtP | The cohomology of commutative semigroups an overview |
title_full | The cohomology of commutative semigroups an overview Pierre Antoine Grillet |
title_fullStr | The cohomology of commutative semigroups an overview Pierre Antoine Grillet |
title_full_unstemmed | The cohomology of commutative semigroups an overview Pierre Antoine Grillet |
title_short | The cohomology of commutative semigroups |
title_sort | the cohomology of commutative semigroups an overview |
title_sub | an overview |
topic_facet | Konferenzschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033904775&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000676446 |
work_keys_str_mv | AT grilletpierrea thecohomologyofcommutativesemigroupsanoverview |