Biodegradable polymers in the circular plastics economy:
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim, Germany
WILEY-VCH
[2022]
|
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34761-2/ Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | xvi, 472 Seiten Illustrationen, Diagramme 25 cm, 1082 g |
ISBN: | 9783527347612 3527347615 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048527854 | ||
003 | DE-604 | ||
005 | 20230120 | ||
007 | t | ||
008 | 221024s2022 gw a||| |||| 00||| eng d | ||
015 | |a 21,N50 |2 dnb | ||
015 | |a 22,A41 |2 dnb | ||
016 | 7 | |a 1247293602 |2 DE-101 | |
020 | |a 9783527347612 |c Festeinband : circa EUR 149.00 (DE) (freier Preis) |9 978-3-527-34761-2 | ||
020 | |a 3527347615 |9 3-527-34761-5 | ||
024 | 3 | |a 9783527347612 | |
028 | 5 | 2 | |a Bestellnummer: 1134761 000 |
035 | |a (OCoLC)1347275808 | ||
035 | |a (DE-599)DNB1247293602 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-703 |a DE-1051 | ||
082 | 0 | |a 668.4192 |2 23/ger | |
082 | 0 | 4 | |a 620.192323 |2 23/ger |
084 | |a UV 9450 |0 (DE-625)146929: |2 rvk | ||
084 | |8 3\p |a 360 |2 23sdnb | ||
084 | |8 1\p |a 620 |2 23sdnb | ||
084 | |8 2\p |a 660 |2 23sdnb | ||
245 | 1 | 0 | |a Biodegradable polymers in the circular plastics economy |c edited by Michiel Dusselier and Jean-Paul Lange |
264 | 1 | |a Weinheim, Germany |b WILEY-VCH |c [2022] | |
300 | |a xvi, 472 Seiten |b Illustrationen, Diagramme |c 25 cm, 1082 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Kreislaufwirtschaft |0 (DE-588)4361327-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Biologisch abbaubarer Kunststoff |0 (DE-588)4634464-0 |2 gnd |9 rswk-swf |
653 | |a Biopolymere | ||
653 | |a Biopolymers | ||
653 | |a Chemical Engineering | ||
653 | |a Chemie | ||
653 | |a Chemische Verfahrenstechnik | ||
653 | |a Chemistry | ||
653 | |a Industrial Chemistry | ||
653 | |a Nachhaltige u. Grüne Chemie | ||
653 | |a Polymer processing | ||
653 | |a Polymer Science & Technology | ||
653 | |a Polymerverarbeitung | ||
653 | |a Polymerwissenschaft u. -technologie | ||
653 | |a Process Engineering | ||
653 | |a Prozesssteuerung | ||
653 | |a Sustainable Chemistry & Green Chemistry | ||
653 | |a Technische u. Industrielle Chemie | ||
653 | |a CG10: Prozesssteuerung | ||
653 | |a CH30: Technische u. Industrielle Chemie | ||
653 | |a CHC0: Nachhaltige u. Grüne Chemie | ||
653 | |a PY10: Polymerverarbeitung | ||
653 | |a PY20: Biopolymere | ||
653 | |a Biologisch abbaubarer Kunststoff | ||
653 | |a Kreislaufwirtschaft | ||
689 | 0 | 0 | |a Biologisch abbaubarer Kunststoff |0 (DE-588)4634464-0 |D s |
689 | 0 | 1 | |a Kreislaufwirtschaft |0 (DE-588)4361327-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Dusselier, Michiel |0 (DE-588)1267279923 |4 edt | |
700 | 1 | |a Lange, Jean-Paul |d 1961- |0 (DE-588)1201912113 |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-82756-5 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-82757-2 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-527-82758-9 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34761-2/ |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1247293602/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033904640&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033904640 | ||
883 | 2 | |8 1\p |a dnb |d 20220920 |q DE-101 |u https://d-nb.info/provenance/plan#dnb | |
883 | 2 | |8 2\p |a dnb |d 20220920 |q DE-101 |u https://d-nb.info/provenance/plan#dnb | |
883 | 2 | |8 3\p |a dnb |d 20220920 |q DE-101 |u https://d-nb.info/provenance/plan#dnb |
Datensatz im Suchindex
_version_ | 1804184518952747008 |
---|---|
adam_text | CONTENTS
PREFACE
XV
1
BIODEGRADABLE
POLYMERS
-
A
TUTORIAL
FOR
A
CIRCULAR
PLASTICS
ECONOMY
1
JEAN-PAUL
LANGE,
MICHIEL
DUSSELIER,
AND
STEFAAN
DE
WILDEMAN
1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.4
1.4.1
1.4.2
1.4.3
1.5
CONTEXT
1
PLASTICS
IN
THE
ENVIRONMENT
-
BIODEGRADATION
AND
IMPACT
OF
LITTER
4
BIODEGRADABLE
POLYMERS
5
POLYESTERS
6
POLYSACCHARIDES
8
LIGNIN
9
VITRIMERS
-
RECYCLABLE
THERMOSETS
9
BEYOND
BIODEGRADATION
10
RECYCLING
AND
END-OF-LIFE
10
LCA
11
IMPLEMENTING
THE
NEW
PLASTICS
ECONOMY
11
CONCLUSIONS
AND
OUTLOOK
12
REFERENCES
15
2
FUNDAMENTALS
OF
POLYMER
BIODEGRADATION
MECHANISMS
17
EBIN
JOSEPH,
PAYMAN
TOHIDIFAR,
CARA
T,
SARVER,
RODERICK
L
MACKIE,
AND
CHRISTOPHER
V.
RAO
2.1
2.2
2.3
2.3.1
2.3.2
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
INTRODUCTION
17
OVERALL
SCHEME
OF
POLYMER
DEGRADATION
19
BIODEGRADATION
OF
POLYSACCHARIDES
20
CELLULOSE
20
STARCH
22
BIODEGRADATION
OF
POLYAMIDES
24
BIODEGRADATION
OF
POLYESTERS
24
POLYLACTIC
ACID
25
POLY(E-CAPROLACTONE)
27
POLYHYDROXYALKANOATES
28
POLYETHYLENE
TEREPHTHALATE
29
VI
CONTENTS
2.6
2.6.1
2.6.2
2.6.3
2.7
2.7.1
2.7.2
2.8
2.8.1
2.8.2
2.9
2.10
BIODEGRADATION
OF
HYDROCARBONS
36
POLYETHYLENE
36
POLYPROPYLENE
38
POLYSTYRENE
39
BIODEGRADATION
OF
HALOGENATED
POLYMERS
40
POLYVINYL
CHLORIDE
41
POLYTETRAFLUOROETHYLENE
41
BIODEGRADATION
OF
POLYETHERS
41
POLYETHYLENE
GLYCOL
41
POLYURETHANE
42
APPLICATION
OF
BIODEGRADATION
43
CURRENT
CHALLENGES
AND
FUTURE
PROSPECTS
FOR
BIODEGRADATION
OF
PLASTICS
WASTES
44
2.A
DETAILED
MECHANISM
OF
PET
HYDROLYSIS
45
REFERENCES
46
3
PLASTIC
POLLUTION.
THE
ROLE
OF
(BIO)DEGRADABLE
PLASTICS
AND
OTHER
SOLUTIONS
59
LEI
TIAN,
ROBERT-JAN
VAN
PUTTEN,
AND
GERT-JAN
M.
GRUTER
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.3
3.3.1
INTRODUCTION
AND
PROBLEM
DEFINITION
59
SOURCES
OF
MACROPLASTICS
AND
MNPS
61
MISMANAGEMENT
OF
WASTE
61
ACCIDENTAL
RELEASE
64
MNPS
IN
PRODUCTS
64
DEGRADATION
OF
OUTDOOR
OBJECTS
64
WEAR
(TIRES,
CLOTHING)
65
WASTE
AND
WASTEWATER
MANAGEMENT
(WATER/WIND)
66
IMPACTS
OF
MACROPLASTICS
AND
MNPS
67
ECOLOGICAL
IMPACT
OF
MACROPLASTICS
(ENTANGLEMENT
AND
INGESTION)
67
3.3.2
3.3.3
3.3.3.1
3.3.3.2
3.3.3.3
3.3.4
3.3.4.1
3.3.4.2
3.3.4.3
3.3.5
3.4
3.5
3.5.1
3.5.2
3.5.3
ECONOMIC
IMPACT
OF
MACROPLASTICS
67
ECOLOGICAL
IMPACTS
OF
MNPS
68
AQUATIC
ENVIRONMENT
68
TERRESTRIAL
ENVIRONMENT
69
ATMOSPHERE
69
THREAT
TO
HUMAN
HEALTH
70
MNPS
IN
THE
HUMAN
FOOD
CHAIN
70
PLASTIC-RELATED
CONTAMINANTS
70
OTHER CONTAMINANTS
70
SOCIO-ECONOMIC
IMPACTS
OF
MNPS
71
PLASTIC
BIODEGRADABILITY
71
SOLUTIONS
72
CLEANING
UP
72
WASTE
MITIGATION
73
MATERIAL
DESIGN
73
CONTENTS
VII
3.5.4
3.5.5
3.6
BRINGING
IT
ALL
TOGETHER
73
POLICIES
AND
LEGISLATION
76
CONCLUSIONS
77
REFERENCES
78
4
TUTORIAL
ON
POLYMERS
-
MANUFACTURE,
PROPERTIES,
AND
APPLICATIONS
83
GERT-JAN
M.
GRUTER
AND
JEAN-PAUL
LANGE
4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.4.1
4.2.4.2
4.2.4.3
4.2.4.4
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.4
4.4.1
4.4.2
4.5
4.A
INTRODUCTION
83
TODAY
S
PETROCHEMICAL
INDUSTRY
83
TODAY
S
BIO-BASED
PLASTIC
INDUSTRY
85
ENVIRONMENTAL
AND
CLIMATE
CHALLENGES
85
PRODUCTION
OF
POLYMERS
86
ADDITION
POLYMERS
87
CONDENSATION
POLYMERS
88
THERMOSETS
90
RENEWABLE
MONOMERS
91
OILS-BASED
MONOMERS
91
SUGAR-BASED
MONOMERS
92
LIGNOCELLULOSE-BASED
MONOMERS
93
CO
2
-BASED
MONOMERS
95
MAIN
POLYMERS
APPLICATIONS
95
RIGIDS
97
FILMS
98
FIBERS
98
FOAMS
99
CASE
(COATINGS,
ADHESIVES,
SEALANTS,
ELASTOMERS)
100
COMPOSITES
102
END-OF-LIFE
AND
BIODEGRADATION
103
REUSE
AND
RECYCLING
103
BIODEGRADATION
103
CONCLUSIONS
105
DEFINITIONS:
BIOPOLYMER
VS.
BIO-BASED
POLYMER
AND
RELATION
TO
BIODEGRADATION
105
LIST
OF
POLYMERS
107
REFERENCES
108
5
CONDENSATION
POLYESTERS
113
JULES
STOUTEN
AND
KATRIEN
V.
BERNAERTS
5.1
5.2
5.3
5.3.1
5.3.2
5.4
INTRODUCTION
113
PREPARATIVE
METHODS
114
BIODEGRADATION
OF
POLYESTERS
116
HYDROLYTIC
DEGRADATION
117
ENZYMATIC
DEGRADATION
118
ALIPHATIC
POLYESTERS
119
VIII
CONTENTS
5.4.1
5.4.2
5.4.3
5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.2
5.6.3
5.7
5.7.1
5.7.2
5.7.3
5.8
5.9
POLY(ALKYLENE
DICARBOXYLATES)
119
POLY(HYDROXY
ACIDS)
120
CYCLIC
SUGAR-BASED
MONOMERS
121
SEMI-AROMATIC
POLYESTERS
122
POLY(BUTYLENE
ADIPATE
TEREPHTHALATE)
(PBAT)
122
FURANOATE
COPOLYMERS
124
CROSS-LINKED
POLYESTERS
127
MULTIFUNCTIONAL
ALCOHOLS
OR
CARBOXYLIC
ACIDS
127
INCORPORATION
OF
FUNCTIONAL
MONOMERS
129
CROSS-LINKING
OF
NATIVE
POLYESTERS
130
APPLICATIONS
FOR
BIODEGRADABLE
CONDENSATION
POLYESTERS
130
BIOMEDICAL
APPLICATIONS
131
AGRICULTURAL
APPLICATIONS
132
PACKAGING
MATERIAL
132
POLYESTER
RECYCLING
132
CONCLUDING
REMARKS
134
REFERENCES
135
6
POLYHYDROXYALKANOATES
(PHAS)
-
PRODUCTION,
PROPERTIES,
AND
BIODEGRADATION
145
MARTIN
KOLLER
AND
ANINDYA
MUKHERJEE
6.1
6.1.1
6.1.2
6.1.3
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.5
INTRODUCTION
145
GENERAL
ASPECTS
OF
BIODEGRADATION
OF
POLYMERS
147
GENERAL
ASPECTS
OF
MICROBIAL
SYNTHESIS
OF
PHAS
148
TYPES
AND
PROPERTIES
OF
PHAS
150
BIOSYNTHESIS
-
SUBSTRATES
AND
STRAINS
152
PRINCIPLE
STOICHIOMETRY
OF
PHA
BIOSYNTHESIS
152
BIOSYNTHESIS
OF
SCL
AND
MCL-PHAS
154
HETEROTROPHIC
FEEDSTOCKS
155
AUTOTROPHIC
FEEDSTOCKS
157
SYNGAS
158
METHANE
158
PRODUCTION
STRAINS
160
BIOENGINEERING:
BIOREACTOR
DESIGN
AND
FEEDING
REGIME
163
FEEDING
REGIME
163
CONTINUOUSLY
OPERATED
BIOREACTORS
FOR LIQUID
FEED
164
BIOREACTORS
FOR
GAS
FEED
166
PHOTO-REACTORS
FOR
CO
2
FEED
166
DOWNSTREAM
PROCESSING
FOR
PHA
RECOVERY
167
CLASSICAL
SOLVENTS
168
HALOGEN-FREE
SOLVENTS
170
SUPERCRITICAL
SOLVENTS
172
RECOVERY
BY
CHEMICAL
AND
MECHANICAL
DISINTEGRATION
OF
BIOMASS
173
BIOLOGICAL
PHA
RECOVERY
175
END-OF-LIFE
OPTIONS:
RECYCLING
AND
BIODEGRADATION
OF
PHAS
176
CONTENTS
IX
6.5.1
6.5.2
6.5.3
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.7
RECYCLING
176
INCINERATION
178
MECHANISTIC
CONSIDERATIONS
OF
PHA
DEGRADATION
178
BIODEGRADATION
-
ADDED
VALUE
FOR
SELECTED
APPLICATIONS
181
PACKAGING
181
HYGIENE/CARE/COSMETICS
182
MEDICAL
-
DRUG
DELIVERY
182
OTHER
APPLICATIONS
184
CONCLUSIONS
185
REFERENCES
186
7
RING-OPENING
POLYMERIZATION
STRATEGIES
FOR
DEGRADABLE
POLYESTERS
205
AN
SOFIE
NARMON,
LILIANA
M,
JENISCH,
LOUIS
M.
PITET,
AND
MICHIEL
DUSSELIER
7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.3.1
7.3.2
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.4
7.3.4.1
7.3.4.2
7.3.4.3
7.3.4.4
7.3.5
7.3.5.1
7.3.5.2
7.3.5.3
7.3.5.4
7.3.6
7.3.6.1
7.3.6.2
7.3.6.3
7.3.6.4
7.3.6.5
7.3.7
7.3.7.1
INTRODUCTION
205
RING-OPENING
POLYMERIZATION
MECHANISMS
207
CATIONIC
RING-OPENING
POLYMERIZATION
207
ANIONIC
RING-OPENING
POLYMERIZATION
209
COORDINATION-INSERTION
RING-OPENING
POLYMERIZATION
210
ENZYMATIC
RING
OPENING
POLYMERIZATION
211
ROP-BASED
POLYESTERS
211
LACTONES
211
THERMODYNAMICS
AND
KINETICS
212
FUNCTIONALIZATION
214
ROP
OF
FUNCTIONAL
LACTONES
215
POST-POLYMERIZATION
FUNCTIONALIZATION
215
GRAFTING
216
FOUR-MEMBERED
LACTONES
216
P-BUTYROLACTONE
218
ACID-SUBSTITUTED
P-LACTONES
(P-MALOLACTONATE)
218
ALKOXY-SUBSTITUTED
P-LACTONES
219
ALKENE-SUBSTITUTED
P-LACTONES
220
FIVE-MEMBERED
LACTONES
221
Y-BUTYROLACTONE
221
A-ANGELICALACTONE
223
A-METHYLENE-Y-BUTYROLACTONE
223
ETHER
Y-LACTONES
225
SIX-MEMBERED
LACTONES
227
6-VALEROLACTONE
227
UNSATURATED
8
LACTONES
227
ESTER-SUBSTITUTED
6-LACTONES
228
ETHER
8-LACTONES
230
DILACTONES
232
SEVEN-MEMBERED
LACTONES
236
E
CAPROLACTONE
236
CONTENTS
73.7.2
7.3.73
7.4
7.5
7.6
SUBSTITUTED
AND
FUNCTIONALIZED
E
CAPROLACTONE
238
ETHER-E-LACTONES
241
RELATIONS
BETWEEN
ROP
POLYMERS
AND
DEGRADABILITY
242
CONCLUSION
246
OUTLOOK
AND
RECOMMENDATIONS
249
REFERENCES
252
8
RECENT
DEVELOPMENTS
IN
BIODEGRADABLE
CELLULOSE-BASED
PLASTICS
273
KARIN
MOLENVELD
AND
TED
M.
SLAGHEK
8.1
8.2
83
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.4
8.4.1
8.4.2
8.4.3
GENERAL
INTRODUCTION
273
CELLULOSE
274
THE
DEVELOPMENT
OF
CELLULOSE
PLASTICS
275
CELLULOSE
FEEDSTOCK
AND
DISSOLVING
PULP
276
CELLULOSE
DERIVATIZATION
276
CELLULOSE
ACETATE
AND
CELLULOSE
ESTERS
277
CELLOPHANE
279
CELLULOSE
FIBERS
IN
THERMOPLASTIC
FORMULATIONS
280
RECENT
DEVELOPMENTS
IN
THERMOPLASTIC
CELLULOSE
DERIVATIVES
280
CHARACTERIZATION
METHODS
FOR
LIGNOCELLULOSIC
BIOMASS
281
ALTERNATIVE
FEEDSTOCKS FOR
DISSOLVING
PULP
AND
PRODUCTION
ROUTES
282
IONIC
LIQUIDS
AND
DEEP
EUTECTIC
SOLVENTS
FOR
CELLULOSE
REGENERATION
AND
MODIFICATION
283
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8
8.4.9
8.5
8.6
NEW
DERIVATIZATION
ROUTES
284
PLASTICIZERS
284
MIXED
CELLULOSE
ESTERS
285
CELLULOSE-POLYMER
BLENDS
286
(NEW)
PROPERTIES
AND
PROCESSING
ROUTES
287
NEW
APPLICATIONS
287
BIODEGRADATION
OF
CELLULOSE
DERIVATIVES
288
CONCLUSIONS
289
REFERENCES
290
9
ESTER
DERIVATIVES
OF
MICROBIAL
SYNTHETIC
POLYSACCHARIDES
299
HAKYONG
LEE,
HONGYI
GAN,
AZUSA
TOGO,
YUYA
FUKATA,
AND
TADAHISA
IWATA
9.1
9.1.1
9.1.2
9.2
9.3
9.4
INTRODUCTION
299
BACKGROUND
OF
BIO-BASED
PLASTICS
299
POLYSACCHARIDES
300
ZERO
BIREFRINGENCE
PROPERTY
OF
PULLULAN
ESTERS
302
BIO-BASED
ADHESIVES
FROM
DEXTRAN
(A-1,6-GLUCAN)
304
FILMS
AND
FIBERS
FROM
PARAMYLON
AND
CURDLAN
(0-1,3-GLUCAN)
ESTERS
306
9.5
9.6
9.6.1
POLYMERIZATION
OF
A-L,3-GLUCAN
AND
FILMS
OF
A-L,3-GLUCAN
ESTERS
310
HIGH-PERFORMANCE
POLYSACCHARIDE-BRANCHED
ESTERS
312
CELLULOSE-BRANCHED
ESTERS
[14]
312
CONTENTS
XI
9.6.2
P-L,3-GLUCAN
(CURDLAN)
BRANCHED
ESTERS
[15]
314
9.6.3
A-L,3-GLUCAN-BRANCHED
ESTERS
[16]
315
9.7
ENZYMATIC
ESTERIFICATION
OF
POLYSACCHARIDES
316
9.7.1
ENZYMES
AS
BIOCATALYSTS
317
9.7.2
REACTION
MECHANISM
318
9.7.3
FACTORS
INFLUENCING
ENZYME
ACTIVITY
319
9.7.4
STRATEGIES
FOR
EFFICIENT
BIOCATALYST
PROCESSES
320
9.7.5
DEVELOPMENT
TREND
AND
PROSPECTS
320
9.8
BIODEGRADATION
OF
POLYSACCHARIDE
ESTER
322
9.9
SUMMARY
322
REFERENCES
322
10
BIODEGRADABLE
LIGNIN-BASED
PLASTICS
329
YI-RU
CHEN
AND
SIMO
SARKANEN
10.1
LIGNOCELLULOSE
BIOREFINERIES
329
10.2
MACROMOLECULAR
LIGNIN
CONFIGURATION
331
10.3
INDUSTRIAL
AVAILABILITY
OF
LIGNINS
336
10.4
COMPELLING
TRAITS
IN
PHYSICOCHEMICAL
BEHAVIOR
OF
KRAFT
LIGNIN
SPECIES
337
10.5
KRAFT
LIGNIN-BASED
PLASTICS
341
10.6
TUNING
STRENGTH
AND
PRODUCTION
COST
OF
PLASTICS
WITH
HIGH
KRAFT
LIGNIN
CONTENTS
343
10.7
LIGNINSULFONATES
(LIGNOSULFONATES)
346
10.8
LABORATORY
BALL-MILLED
LIGNINS
348
10.9
BLEND
CONFIGURATION
IN
BALL-MILLED
LIGNIN-BASED
PLASTICS
EXEMPLIFIES
THE
GENERAL
CASE
351
10.10
LIGNIN-LIGNIN
BLENDS
355
10.11
BIODEGRADATION
OF
KRAFT
LIGNIN-BASED
PLASTICS
357
10.12
ALTERNATIVE
FORMULATIONS
FOR
POLYMERIC
MATERIALS
CONTAINING
MORE
THAN
50
WT%
LIGNIN
359
10.13
CONCLUDING
REMARKS
362
ACKNOWLEDGMENTS
362
REFERENCES
363
11
DESIGN
OF
RECYCLABLE
THERMOSETS
369
BRYN
D.
MONNERY,
APOSTOLOS
KARANASTASIS,
AND
LOUIS
M.
PITET
11.1
INTRODUCTION
369
11.1.1
POLYMERS
AND
PLASTICS
369
11.1.2
HANDLING
OF
PLASTIC
WASTE
370
11.1.3
CHEMICAL
NATURE
OF
PLASTICS
370
11.2
DESIGN
OF
RECYCLABLE
THERMOSETTING
POLYMERS
372
11.2.1
RECYCLABILITY
BY
TRIGGERED
DEGRADATION
374
11.2.2
DISSOCIATIVE
COVALENT
ADAPTIVE
NETWORKS
374
11.2.3
VITRIMERS
(ASSOCIATIVE
CANS)
376
11.3
EXAMPLES
OF
VITRIMERS
380
XII
CONTENTS
11.4
11.5
ADAPTABLE
CROSS-LINKING
OF
CONVENTIONAL
POLYMERS
383
OUTLOOK
AND
SUMMARY
385
REFERENCES
387
12
MANAGING
PLASTIC
WASTES
391
JEAN-PAUL
LANGE
12.1
12.2
12.3
12.4
12.5
12.5.1
12.5.2
12.5.3
12.6
12.7
12.8
12.9
12.10
INTRODUCTION
391
PLASTIC
WASTE
391
MECHANICAL
RECYCLING
393
DISSOLUTION/PRECIPITATION
394
CHEMICAL
RECYCLING
395
DEPOLYMERIZATION
OF
CONDENSATION
POLYMERS
396
MELT
PYROLYSIS
OF
POLYOLEFINS
397
ALTERNATIVE
PYROLYSIS
PROCESSES
398
ENERGY
RECOVERY
-
RECYCLE
FUELS
AND
INCINERATION
400
WASTE
DESTRUCTION
-
BIODEGRADATION
401
LIFE
CYCLE
ANALYSES
401
NEED
FOR
FRESH
CARBON
INPUT
402
CONCLUSION
AND
OUTLOOK
403
REFERENCES
404
13
LIFE
CYCLE
ASSESSMENT
OF
BIO-BASED
PLASTICS:
CONCEPTS,
FINDINGS,
AND
PITFALLS
409
LI
SHEN
13.1
13.2
13.3
13.3.1
13.3.2
13.3.2.1
13.3.2.2
13.3.2.3
13.3.2.4
13.4
INTRODUCTION
AND
CHAPTER
LEARNING
OBJECTIVES
409
BIOPLASTICS
IS
A
CONFUSING
TERM
409
LCA
IN
A
NUTSHELL
412
CONCEPT
AND
A
BRIEF
HISTORY
412
PROCEDURE,
JARGONS,
AND
SCIENCES
BEHIND
413
GOAL
AND
SCOPE
DEFINITION
414
LIFE
CYCLE
INVENTORY
ANALYSIS
(LCI)
414
LIFE
CYCLE
IMPACT
ASSESSMENT
(LCIA)
415
INTERPRETATION
416
LCA
CASE
STUDIES
OF
SEVEN
SINGLE-USE
PLASTIC
ITEMS
MADE
FROM
BIO-BASED
RESOURCES:
HIGHLIGHTS
AND
LESSONS
LEARNED
417
13.4.1
13.4.2
13.4.2.1
13.4.2.2
BACKGROUND,
AIM,
AND
SCOPE
OF
THE
BIO-SPRI
STUDY
417
KEY
FINDINGS
419
BIOMASS
FEEDSTOCK
ACQUISITION
421
MANUFACTURING
PHASE:
FROM
BIOMASS
TO
POLYMERS,
MATERIALS,
AND
END
PRODUCTS
426
13.4.2.3
13.4.2.4
13.4.3
13.5
DISTRIBUTION
TO
END
USER:
IMPACTS
FROM
TRANSPORTATION
427
END-OF-LIFE
(EOL)
POST-CONSUMER
WASTE
MANAGEMENT
SCENARIOS
427
COMPARISONS
WITH
PETROCHEMICAL
PLASTICS
431
LESSONS
LEARNED
FROM
THE
CASE
STUDIES
AND
LOOKING
FORWARD
TO
A
CIRCULAR
BIO-BASED
ECONOMY
432
INDEX
457
CONTENTS
|
XIII
13.A
GENERAL
STRUCTURE
OF
CLASSIFICATION
AND
CHARACTERIZATION
IN
LCIA,
USING
THE
EXAMPLE
OF
16
IMPACT
CATEGORIES
RECOMMENDED
BY
THE
EC
EF
(ENVIRONMENTAL
FOOTPRINT)
IMPACT
ASSESSMENT
METHODS
434
13.B
NORMALIZATION
AND
WEIGHTING FACTORS
RECOMMENDED
BY
THE
EF
(ENVIRONMENTAL
FOOTPRINT)
METHOD
[12,19,46],
LATEST
UPDATE:
MAY
2020
436
REFERENCES
436
14
HOW
TO
CREATE
A
NEW
PLASTICS
ECONOMY
?
MARKETING
STRATEGIES
AND
HURDLES
-
FINDING
APPLICATION
NICHES
441
SIL
NEVEJANS
AND
STEFAAN
DE
WILDEMAN
14.1
14.2
14.2.1
14.2.2
14.2.3
14.3
14.4
14.4.1
14.4.2
14.4.3
14.5
14.5.1
INTRODUCTION
441
STORIES
FROM
THE
PAST
442
POLYHYDROXYALKANOATES
(PHAS)
442
POLYLACTIC
ACIDS
(PLA)
443
POLYETHYLENEFURANOATES
(PEF)
444
GREENWASHING
VS.
GROWING PAINS
444
FROM
IDEA
TO
PRODUCT:
TECHNICAL
READINESS
LEVELS
445
DEFINING
THE
TECHNICAL
READINESS
LEVELS
445
APPLICATION
OF
THE
TRLS
447
PRODUCT(ION)
VALIDATION
449
FIVE
INNOVATION
RULES
TO
CREATE
A
NEW
PLASTICS
ECONOMY
449
TARGET
SMALL-VOLUME,
HIGH-VALUE
APPLICATIONS
TO
OPEN
NEW
MARKET
SPACE
450
14.5.2
14.5.3
14.5.4
14.5.5
14.6
TIME
RIGHT
INSTEAD
OF
FAST
451
GO
LOCAL
452
TAKE
RISKS
453
GO
GREEN
454
CONCLUSION
455
REFERENCES
456
|
adam_txt |
CONTENTS
PREFACE
XV
1
BIODEGRADABLE
POLYMERS
-
A
TUTORIAL
FOR
A
CIRCULAR
PLASTICS
ECONOMY
1
JEAN-PAUL
LANGE,
MICHIEL
DUSSELIER,
AND
STEFAAN
DE
WILDEMAN
1.1
1.2
1.3
1.3.1
1.3.2
1.3.3
1.3.4
1.4
1.4.1
1.4.2
1.4.3
1.5
CONTEXT
1
PLASTICS
IN
THE
ENVIRONMENT
-
BIODEGRADATION
AND
IMPACT
OF
LITTER
4
BIODEGRADABLE
POLYMERS
5
POLYESTERS
6
POLYSACCHARIDES
8
LIGNIN
9
VITRIMERS
-
RECYCLABLE
THERMOSETS
9
BEYOND
BIODEGRADATION
10
RECYCLING
AND
END-OF-LIFE
10
LCA
11
IMPLEMENTING
THE
"
NEW
PLASTICS
ECONOMY
"
11
CONCLUSIONS
AND
OUTLOOK
12
REFERENCES
15
2
FUNDAMENTALS
OF
POLYMER
BIODEGRADATION
MECHANISMS
17
EBIN
JOSEPH,
PAYMAN
TOHIDIFAR,
CARA
T,
SARVER,
RODERICK
L
MACKIE,
AND
CHRISTOPHER
V.
RAO
2.1
2.2
2.3
2.3.1
2.3.2
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
INTRODUCTION
17
OVERALL
SCHEME
OF
POLYMER
DEGRADATION
19
BIODEGRADATION
OF
POLYSACCHARIDES
20
CELLULOSE
20
STARCH
22
BIODEGRADATION
OF
POLYAMIDES
24
BIODEGRADATION
OF
POLYESTERS
24
POLYLACTIC
ACID
25
POLY(E-CAPROLACTONE)
27
POLYHYDROXYALKANOATES
28
POLYETHYLENE
TEREPHTHALATE
29
VI
CONTENTS
2.6
2.6.1
2.6.2
2.6.3
2.7
2.7.1
2.7.2
2.8
2.8.1
2.8.2
2.9
2.10
BIODEGRADATION
OF
HYDROCARBONS
36
POLYETHYLENE
36
POLYPROPYLENE
38
POLYSTYRENE
39
BIODEGRADATION
OF
HALOGENATED
POLYMERS
40
POLYVINYL
CHLORIDE
41
POLYTETRAFLUOROETHYLENE
41
BIODEGRADATION
OF
POLYETHERS
41
POLYETHYLENE
GLYCOL
41
POLYURETHANE
42
APPLICATION
OF
BIODEGRADATION
43
CURRENT
CHALLENGES
AND
FUTURE
PROSPECTS
FOR
BIODEGRADATION
OF
PLASTICS
WASTES
44
2.A
DETAILED
MECHANISM
OF
PET
HYDROLYSIS
45
REFERENCES
46
3
PLASTIC
POLLUTION.
THE
ROLE
OF
(BIO)DEGRADABLE
PLASTICS
AND
OTHER
SOLUTIONS
59
LEI
TIAN,
ROBERT-JAN
VAN
PUTTEN,
AND
GERT-JAN
M.
GRUTER
3.1
3.2
3.2.1
3.2.2
3.2.3
3.2.4
3.2.5
3.2.6
3.3
3.3.1
INTRODUCTION
AND
PROBLEM
DEFINITION
59
SOURCES
OF
MACROPLASTICS
AND
MNPS
61
MISMANAGEMENT
OF
WASTE
61
ACCIDENTAL
RELEASE
64
MNPS
IN
PRODUCTS
64
DEGRADATION
OF
OUTDOOR
OBJECTS
64
WEAR
(TIRES,
CLOTHING)
65
WASTE
AND
WASTEWATER
MANAGEMENT
(WATER/WIND)
66
IMPACTS
OF
MACROPLASTICS
AND
MNPS
67
ECOLOGICAL
IMPACT
OF
MACROPLASTICS
(ENTANGLEMENT
AND
INGESTION)
67
3.3.2
3.3.3
3.3.3.1
3.3.3.2
3.3.3.3
3.3.4
3.3.4.1
3.3.4.2
3.3.4.3
3.3.5
3.4
3.5
3.5.1
3.5.2
3.5.3
ECONOMIC
IMPACT
OF
MACROPLASTICS
67
ECOLOGICAL
IMPACTS
OF
MNPS
68
AQUATIC
ENVIRONMENT
68
TERRESTRIAL
ENVIRONMENT
69
ATMOSPHERE
69
THREAT
TO
HUMAN
HEALTH
70
MNPS
IN
THE
HUMAN
FOOD
CHAIN
70
PLASTIC-RELATED
CONTAMINANTS
70
OTHER CONTAMINANTS
70
SOCIO-ECONOMIC
IMPACTS
OF
MNPS
71
PLASTIC
BIODEGRADABILITY
71
SOLUTIONS
72
CLEANING
UP
72
WASTE
MITIGATION
73
MATERIAL
DESIGN
73
CONTENTS
VII
3.5.4
3.5.5
3.6
BRINGING
IT
ALL
TOGETHER
73
POLICIES
AND
LEGISLATION
76
CONCLUSIONS
77
REFERENCES
78
4
TUTORIAL
ON
POLYMERS
-
MANUFACTURE,
PROPERTIES,
AND
APPLICATIONS
83
GERT-JAN
M.
GRUTER
AND
JEAN-PAUL
LANGE
4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.4.1
4.2.4.2
4.2.4.3
4.2.4.4
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.4
4.4.1
4.4.2
4.5
4.A
INTRODUCTION
83
TODAY
'
S
PETROCHEMICAL
INDUSTRY
83
TODAY
'
S
BIO-BASED
PLASTIC
INDUSTRY
85
ENVIRONMENTAL
AND
CLIMATE
CHALLENGES
85
PRODUCTION
OF
POLYMERS
86
ADDITION
POLYMERS
87
CONDENSATION
POLYMERS
88
THERMOSETS
90
RENEWABLE
MONOMERS
91
OILS-BASED
MONOMERS
91
SUGAR-BASED
MONOMERS
92
LIGNOCELLULOSE-BASED
MONOMERS
93
CO
2
-BASED
MONOMERS
95
MAIN
POLYMERS
APPLICATIONS
95
RIGIDS
97
FILMS
98
FIBERS
98
FOAMS
99
CASE
(COATINGS,
ADHESIVES,
SEALANTS,
ELASTOMERS)
100
COMPOSITES
102
END-OF-LIFE
AND
BIODEGRADATION
103
REUSE
AND
RECYCLING
103
BIODEGRADATION
103
CONCLUSIONS
105
DEFINITIONS:
BIOPOLYMER
VS.
BIO-BASED
POLYMER
AND
RELATION
TO
BIODEGRADATION
105
LIST
OF
POLYMERS
107
REFERENCES
108
5
CONDENSATION
POLYESTERS
113
JULES
STOUTEN
AND
KATRIEN
V.
BERNAERTS
5.1
5.2
5.3
5.3.1
5.3.2
5.4
INTRODUCTION
113
PREPARATIVE
METHODS
114
BIODEGRADATION
OF
POLYESTERS
116
HYDROLYTIC
DEGRADATION
117
ENZYMATIC
DEGRADATION
118
ALIPHATIC
POLYESTERS
119
VIII
CONTENTS
5.4.1
5.4.2
5.4.3
5.5
5.5.1
5.5.2
5.6
5.6.1
5.6.2
5.6.3
5.7
5.7.1
5.7.2
5.7.3
5.8
5.9
POLY(ALKYLENE
DICARBOXYLATES)
119
POLY(HYDROXY
ACIDS)
120
CYCLIC
SUGAR-BASED
MONOMERS
121
SEMI-AROMATIC
POLYESTERS
122
POLY(BUTYLENE
ADIPATE
TEREPHTHALATE)
(PBAT)
122
FURANOATE
COPOLYMERS
124
CROSS-LINKED
POLYESTERS
127
MULTIFUNCTIONAL
ALCOHOLS
OR
CARBOXYLIC
ACIDS
127
INCORPORATION
OF
FUNCTIONAL
MONOMERS
129
CROSS-LINKING
OF
NATIVE
POLYESTERS
130
APPLICATIONS
FOR
BIODEGRADABLE
CONDENSATION
POLYESTERS
130
BIOMEDICAL
APPLICATIONS
131
AGRICULTURAL
APPLICATIONS
132
PACKAGING
MATERIAL
132
POLYESTER
RECYCLING
132
CONCLUDING
REMARKS
134
REFERENCES
135
6
POLYHYDROXYALKANOATES
(PHAS)
-
PRODUCTION,
PROPERTIES,
AND
BIODEGRADATION
145
MARTIN
KOLLER
AND
ANINDYA
MUKHERJEE
6.1
6.1.1
6.1.2
6.1.3
6.2
6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.5
INTRODUCTION
145
GENERAL
ASPECTS
OF
BIODEGRADATION
OF
POLYMERS
147
GENERAL
ASPECTS
OF
MICROBIAL
SYNTHESIS
OF
PHAS
148
TYPES
AND
PROPERTIES
OF
PHAS
150
BIOSYNTHESIS
-
SUBSTRATES
AND
STRAINS
152
PRINCIPLE
STOICHIOMETRY
OF
PHA
BIOSYNTHESIS
152
BIOSYNTHESIS
OF
SCL
AND
MCL-PHAS
154
HETEROTROPHIC
FEEDSTOCKS
155
AUTOTROPHIC
FEEDSTOCKS
157
SYNGAS
158
METHANE
158
PRODUCTION
STRAINS
160
BIOENGINEERING:
BIOREACTOR
DESIGN
AND
FEEDING
REGIME
163
FEEDING
REGIME
163
CONTINUOUSLY
OPERATED
BIOREACTORS
FOR LIQUID
FEED
164
BIOREACTORS
FOR
GAS
FEED
166
PHOTO-REACTORS
FOR
CO
2
FEED
166
DOWNSTREAM
PROCESSING
FOR
PHA
RECOVERY
167
CLASSICAL
SOLVENTS
168
HALOGEN-FREE
SOLVENTS
170
SUPERCRITICAL
SOLVENTS
172
RECOVERY
BY
CHEMICAL
AND
MECHANICAL
DISINTEGRATION
OF
BIOMASS
173
BIOLOGICAL
PHA
RECOVERY
175
END-OF-LIFE
OPTIONS:
RECYCLING
AND
BIODEGRADATION
OF
PHAS
176
CONTENTS
IX
6.5.1
6.5.2
6.5.3
6.6
6.6.1
6.6.2
6.6.3
6.6.4
6.7
RECYCLING
176
INCINERATION
178
MECHANISTIC
CONSIDERATIONS
OF
PHA
DEGRADATION
178
BIODEGRADATION
-
ADDED
VALUE
FOR
SELECTED
APPLICATIONS
181
PACKAGING
181
HYGIENE/CARE/COSMETICS
182
MEDICAL
-
DRUG
DELIVERY
182
OTHER
APPLICATIONS
184
CONCLUSIONS
185
REFERENCES
186
7
RING-OPENING
POLYMERIZATION
STRATEGIES
FOR
DEGRADABLE
POLYESTERS
205
AN
SOFIE
NARMON,
LILIANA
M,
JENISCH,
LOUIS
M.
PITET,
AND
MICHIEL
DUSSELIER
7.1
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.3
7.3.1
7.3.2
7.3.3
7.3.3.1
7.3.3.2
7.3.3.3
7.3.4
7.3.4.1
7.3.4.2
7.3.4.3
7.3.4.4
7.3.5
7.3.5.1
7.3.5.2
7.3.5.3
7.3.5.4
7.3.6
7.3.6.1
7.3.6.2
7.3.6.3
7.3.6.4
7.3.6.5
7.3.7
7.3.7.1
INTRODUCTION
205
RING-OPENING
POLYMERIZATION
MECHANISMS
207
CATIONIC
RING-OPENING
POLYMERIZATION
207
ANIONIC
RING-OPENING
POLYMERIZATION
209
COORDINATION-INSERTION
RING-OPENING
POLYMERIZATION
210
ENZYMATIC
RING
OPENING
POLYMERIZATION
211
ROP-BASED
POLYESTERS
211
LACTONES
211
THERMODYNAMICS
AND
KINETICS
212
FUNCTIONALIZATION
214
ROP
OF
FUNCTIONAL
LACTONES
215
POST-POLYMERIZATION
FUNCTIONALIZATION
215
GRAFTING
216
FOUR-MEMBERED
LACTONES
216
P-BUTYROLACTONE
218
ACID-SUBSTITUTED
P-LACTONES
(P-MALOLACTONATE)
218
ALKOXY-SUBSTITUTED
P-LACTONES
219
ALKENE-SUBSTITUTED
P-LACTONES
220
FIVE-MEMBERED
LACTONES
221
Y-BUTYROLACTONE
221
A-ANGELICALACTONE
223
A-METHYLENE-Y-BUTYROLACTONE
223
ETHER
Y-LACTONES
225
SIX-MEMBERED
LACTONES
227
6-VALEROLACTONE
227
UNSATURATED
8
LACTONES
227
ESTER-SUBSTITUTED
6-LACTONES
228
ETHER
8-LACTONES
230
DILACTONES
232
SEVEN-MEMBERED
LACTONES
236
E
CAPROLACTONE
236
CONTENTS
73.7.2
7.3.73
7.4
7.5
7.6
SUBSTITUTED
AND
FUNCTIONALIZED
E
CAPROLACTONE
238
ETHER-E-LACTONES
241
RELATIONS
BETWEEN
ROP
POLYMERS
AND
DEGRADABILITY
242
CONCLUSION
246
OUTLOOK
AND
RECOMMENDATIONS
249
REFERENCES
252
8
RECENT
DEVELOPMENTS
IN
BIODEGRADABLE
CELLULOSE-BASED
PLASTICS
273
KARIN
MOLENVELD
AND
TED
M.
SLAGHEK
8.1
8.2
83
8.3.1
8.3.2
8.3.3
8.3.4
8.3.5
8.4
8.4.1
8.4.2
8.4.3
GENERAL
INTRODUCTION
273
CELLULOSE
274
THE
DEVELOPMENT
OF
CELLULOSE
PLASTICS
275
CELLULOSE
FEEDSTOCK
AND
DISSOLVING
PULP
276
CELLULOSE
DERIVATIZATION
276
CELLULOSE
ACETATE
AND
CELLULOSE
ESTERS
277
CELLOPHANE
279
CELLULOSE
FIBERS
IN
THERMOPLASTIC
FORMULATIONS
280
RECENT
DEVELOPMENTS
IN
THERMOPLASTIC
CELLULOSE
DERIVATIVES
280
CHARACTERIZATION
METHODS
FOR
LIGNOCELLULOSIC
BIOMASS
281
ALTERNATIVE
FEEDSTOCKS FOR
DISSOLVING
PULP
AND
PRODUCTION
ROUTES
282
IONIC
LIQUIDS
AND
DEEP
EUTECTIC
SOLVENTS
FOR
CELLULOSE
REGENERATION
AND
MODIFICATION
283
8.4.4
8.4.5
8.4.6
8.4.7
8.4.8
8.4.9
8.5
8.6
NEW
DERIVATIZATION
ROUTES
284
PLASTICIZERS
284
MIXED
CELLULOSE
ESTERS
285
CELLULOSE-POLYMER
BLENDS
286
(NEW)
PROPERTIES
AND
PROCESSING
ROUTES
287
NEW
APPLICATIONS
287
BIODEGRADATION
OF
CELLULOSE
DERIVATIVES
288
CONCLUSIONS
289
REFERENCES
290
9
ESTER
DERIVATIVES
OF
MICROBIAL
SYNTHETIC
POLYSACCHARIDES
299
HAKYONG
LEE,
HONGYI
GAN,
AZUSA
TOGO,
YUYA
FUKATA,
AND
TADAHISA
IWATA
9.1
9.1.1
9.1.2
9.2
9.3
9.4
INTRODUCTION
299
BACKGROUND
OF
BIO-BASED
PLASTICS
299
POLYSACCHARIDES
300
ZERO
BIREFRINGENCE
PROPERTY
OF
PULLULAN
ESTERS
302
BIO-BASED
ADHESIVES
FROM
DEXTRAN
(A-1,6-GLUCAN)
304
FILMS
AND
FIBERS
FROM
PARAMYLON
AND
CURDLAN
(0-1,3-GLUCAN)
ESTERS
306
9.5
9.6
9.6.1
POLYMERIZATION
OF
A-L,3-GLUCAN
AND
FILMS
OF
A-L,3-GLUCAN
ESTERS
310
HIGH-PERFORMANCE
POLYSACCHARIDE-BRANCHED
ESTERS
312
CELLULOSE-BRANCHED
ESTERS
[14]
312
CONTENTS
XI
9.6.2
P-L,3-GLUCAN
(CURDLAN)
BRANCHED
ESTERS
[15]
314
9.6.3
A-L,3-GLUCAN-BRANCHED
ESTERS
[16]
315
9.7
ENZYMATIC
ESTERIFICATION
OF
POLYSACCHARIDES
316
9.7.1
ENZYMES
AS
BIOCATALYSTS
317
9.7.2
REACTION
MECHANISM
318
9.7.3
FACTORS
INFLUENCING
ENZYME
ACTIVITY
319
9.7.4
STRATEGIES
FOR
EFFICIENT
BIOCATALYST
PROCESSES
320
9.7.5
DEVELOPMENT
TREND
AND
PROSPECTS
320
9.8
BIODEGRADATION
OF
POLYSACCHARIDE
ESTER
322
9.9
SUMMARY
322
REFERENCES
322
10
BIODEGRADABLE
LIGNIN-BASED
PLASTICS
329
YI-RU
CHEN
AND
SIMO
SARKANEN
10.1
LIGNOCELLULOSE
BIOREFINERIES
329
10.2
MACROMOLECULAR
LIGNIN
CONFIGURATION
331
10.3
INDUSTRIAL
AVAILABILITY
OF
LIGNINS
336
10.4
COMPELLING
TRAITS
IN
PHYSICOCHEMICAL
BEHAVIOR
OF
KRAFT
LIGNIN
SPECIES
337
10.5
KRAFT
LIGNIN-BASED
PLASTICS
341
10.6
TUNING
STRENGTH
AND
PRODUCTION
COST
OF
PLASTICS
WITH
HIGH
KRAFT
LIGNIN
CONTENTS
343
10.7
LIGNINSULFONATES
(LIGNOSULFONATES)
346
10.8
LABORATORY
BALL-MILLED
LIGNINS
348
10.9
BLEND
CONFIGURATION
IN
BALL-MILLED
LIGNIN-BASED
PLASTICS
EXEMPLIFIES
THE
GENERAL
CASE
351
10.10
LIGNIN-LIGNIN
BLENDS
355
10.11
BIODEGRADATION
OF
KRAFT
LIGNIN-BASED
PLASTICS
357
10.12
ALTERNATIVE
FORMULATIONS
FOR
POLYMERIC
MATERIALS
CONTAINING
MORE
THAN
50
WT%
LIGNIN
359
10.13
CONCLUDING
REMARKS
362
ACKNOWLEDGMENTS
362
REFERENCES
363
11
DESIGN
OF
RECYCLABLE
THERMOSETS
369
BRYN
D.
MONNERY,
APOSTOLOS
KARANASTASIS,
AND
LOUIS
M.
PITET
11.1
INTRODUCTION
369
11.1.1
POLYMERS
AND
PLASTICS
369
11.1.2
HANDLING
OF
PLASTIC
WASTE
370
11.1.3
CHEMICAL
NATURE
OF
PLASTICS
370
11.2
DESIGN
OF
RECYCLABLE
THERMOSETTING
POLYMERS
372
11.2.1
RECYCLABILITY
BY
TRIGGERED
DEGRADATION
374
11.2.2
DISSOCIATIVE
COVALENT
ADAPTIVE
NETWORKS
374
11.2.3
VITRIMERS
(ASSOCIATIVE
CANS)
376
11.3
EXAMPLES
OF
VITRIMERS
380
XII
CONTENTS
11.4
11.5
ADAPTABLE
CROSS-LINKING
OF
CONVENTIONAL
POLYMERS
383
OUTLOOK
AND
SUMMARY
385
REFERENCES
387
12
MANAGING
PLASTIC
WASTES
391
JEAN-PAUL
LANGE
12.1
12.2
12.3
12.4
12.5
12.5.1
12.5.2
12.5.3
12.6
12.7
12.8
12.9
12.10
INTRODUCTION
391
PLASTIC
WASTE
391
MECHANICAL
RECYCLING
393
DISSOLUTION/PRECIPITATION
394
CHEMICAL
RECYCLING
395
DEPOLYMERIZATION
OF
CONDENSATION
POLYMERS
396
MELT
PYROLYSIS
OF
POLYOLEFINS
397
ALTERNATIVE
PYROLYSIS
PROCESSES
398
ENERGY
RECOVERY
-
RECYCLE
FUELS
AND
INCINERATION
400
WASTE
DESTRUCTION
-
BIODEGRADATION
401
LIFE
CYCLE
ANALYSES
401
NEED
FOR
FRESH
CARBON
INPUT
402
CONCLUSION
AND
OUTLOOK
403
REFERENCES
404
13
LIFE
CYCLE
ASSESSMENT
OF
BIO-BASED
PLASTICS:
CONCEPTS,
FINDINGS,
AND
PITFALLS
409
LI
SHEN
13.1
13.2
13.3
13.3.1
13.3.2
13.3.2.1
13.3.2.2
13.3.2.3
13.3.2.4
13.4
INTRODUCTION
AND
CHAPTER
LEARNING
OBJECTIVES
409
"
BIOPLASTICS
"
IS
A
CONFUSING
TERM
409
LCA
IN
A
NUTSHELL
412
CONCEPT
AND
A
BRIEF
HISTORY
412
PROCEDURE,
JARGONS,
AND
SCIENCES
BEHIND
413
GOAL
AND
SCOPE
DEFINITION
414
LIFE
CYCLE
INVENTORY
ANALYSIS
(LCI)
414
LIFE
CYCLE
IMPACT
ASSESSMENT
(LCIA)
415
INTERPRETATION
416
LCA
CASE
STUDIES
OF
SEVEN
SINGLE-USE
PLASTIC
ITEMS
MADE
FROM
BIO-BASED
RESOURCES:
HIGHLIGHTS
AND
LESSONS
LEARNED
417
13.4.1
13.4.2
13.4.2.1
13.4.2.2
BACKGROUND,
AIM,
AND
SCOPE
OF
THE
BIO-SPRI
STUDY
417
KEY
FINDINGS
419
BIOMASS
FEEDSTOCK
ACQUISITION
421
MANUFACTURING
PHASE:
FROM
BIOMASS
TO
POLYMERS,
MATERIALS,
AND
END
PRODUCTS
426
13.4.2.3
13.4.2.4
13.4.3
13.5
DISTRIBUTION
TO
END
USER:
IMPACTS
FROM
TRANSPORTATION
427
END-OF-LIFE
(EOL)
POST-CONSUMER
WASTE
MANAGEMENT
SCENARIOS
427
COMPARISONS
WITH
PETROCHEMICAL
PLASTICS
431
LESSONS
LEARNED
FROM
THE
CASE
STUDIES
AND
LOOKING
FORWARD
TO
A
CIRCULAR
BIO-BASED
ECONOMY
432
INDEX
457
CONTENTS
|
XIII
13.A
GENERAL
STRUCTURE
OF
CLASSIFICATION
AND
CHARACTERIZATION
IN
LCIA,
USING
THE
EXAMPLE
OF
16
IMPACT
CATEGORIES
RECOMMENDED
BY
THE
EC
EF
(ENVIRONMENTAL
FOOTPRINT)
IMPACT
ASSESSMENT
METHODS
434
13.B
NORMALIZATION
AND
WEIGHTING FACTORS
RECOMMENDED
BY
THE
EF
(ENVIRONMENTAL
FOOTPRINT)
METHOD
[12,19,46],
LATEST
UPDATE:
MAY
2020
436
REFERENCES
436
14
HOW
TO
CREATE
"A
NEW
PLASTICS
ECONOMY
"
?
MARKETING
STRATEGIES
AND
HURDLES
-
FINDING
APPLICATION
NICHES
441
SIL
NEVEJANS
AND
STEFAAN
DE
WILDEMAN
14.1
14.2
14.2.1
14.2.2
14.2.3
14.3
14.4
14.4.1
14.4.2
14.4.3
14.5
14.5.1
INTRODUCTION
441
STORIES
FROM
THE
PAST
442
POLYHYDROXYALKANOATES
(PHAS)
442
POLYLACTIC
ACIDS
(PLA)
443
POLYETHYLENEFURANOATES
(PEF)
444
GREENWASHING
VS.
GROWING PAINS
444
FROM
IDEA
TO
PRODUCT:
"
TECHNICAL
READINESS
LEVELS
"
445
DEFINING
THE
TECHNICAL
READINESS
LEVELS
445
APPLICATION
OF
THE
TRLS
447
PRODUCT(ION)
VALIDATION
449
FIVE
INNOVATION
RULES
TO
CREATE
"
A
NEW
PLASTICS
ECONOMY
"
449
TARGET
SMALL-VOLUME,
HIGH-VALUE
APPLICATIONS
TO
OPEN
NEW
MARKET
SPACE
450
14.5.2
14.5.3
14.5.4
14.5.5
14.6
TIME
RIGHT
INSTEAD
OF
FAST
451
GO
LOCAL
452
TAKE
RISKS
453
GO
"
GREEN
"
454
CONCLUSION
455
REFERENCES
456 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Dusselier, Michiel Lange, Jean-Paul 1961- |
author2_role | edt edt |
author2_variant | m d md j p l jpl |
author_GND | (DE-588)1267279923 (DE-588)1201912113 |
author_facet | Dusselier, Michiel Lange, Jean-Paul 1961- |
building | Verbundindex |
bvnumber | BV048527854 |
classification_rvk | UV 9450 |
ctrlnum | (OCoLC)1347275808 (DE-599)DNB1247293602 |
dewey-full | 668.4192 620.192323 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 668 - Technology of other organic products 620 - Engineering and allied operations |
dewey-raw | 668.4192 620.192323 |
dewey-search | 668.4192 620.192323 |
dewey-sort | 3668.4192 |
dewey-tens | 660 - Chemical engineering 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Physik |
discipline_str_mv | Chemie / Pharmazie Physik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03556nam a2200877 c 4500</leader><controlfield tag="001">BV048527854</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230120 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">221024s2022 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,N50</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,A41</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1247293602</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527347612</subfield><subfield code="c">Festeinband : circa EUR 149.00 (DE) (freier Preis)</subfield><subfield code="9">978-3-527-34761-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527347615</subfield><subfield code="9">3-527-34761-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527347612</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 1134761 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1347275808</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1247293602</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">668.4192</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620.192323</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UV 9450</subfield><subfield code="0">(DE-625)146929:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">3\p</subfield><subfield code="a">360</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">620</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">660</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biodegradable polymers in the circular plastics economy</subfield><subfield code="c">edited by Michiel Dusselier and Jean-Paul Lange</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim, Germany</subfield><subfield code="b">WILEY-VCH</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvi, 472 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">25 cm, 1082 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kreislaufwirtschaft</subfield><subfield code="0">(DE-588)4361327-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Biologisch abbaubarer Kunststoff</subfield><subfield code="0">(DE-588)4634464-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biopolymere</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biopolymers</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemische Verfahrenstechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Industrial Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nachhaltige u. Grüne Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Polymer processing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Polymer Science & Technology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Polymerverarbeitung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Polymerwissenschaft u. -technologie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Process Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Prozesssteuerung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Sustainable Chemistry & Green Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Technische u. Industrielle Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CG10: Prozesssteuerung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CH30: Technische u. Industrielle Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CHC0: Nachhaltige u. Grüne Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">PY10: Polymerverarbeitung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">PY20: Biopolymere</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biologisch abbaubarer Kunststoff</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Kreislaufwirtschaft</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Biologisch abbaubarer Kunststoff</subfield><subfield code="0">(DE-588)4634464-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Kreislaufwirtschaft</subfield><subfield code="0">(DE-588)4361327-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dusselier, Michiel</subfield><subfield code="0">(DE-588)1267279923</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lange, Jean-Paul</subfield><subfield code="d">1961-</subfield><subfield code="0">(DE-588)1201912113</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-82756-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-82757-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-527-82758-9</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34761-2/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1247293602/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033904640&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033904640</subfield></datafield><datafield tag="883" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">dnb</subfield><subfield code="d">20220920</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#dnb</subfield></datafield><datafield tag="883" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">dnb</subfield><subfield code="d">20220920</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#dnb</subfield></datafield><datafield tag="883" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">dnb</subfield><subfield code="d">20220920</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#dnb</subfield></datafield></record></collection> |
id | DE-604.BV048527854 |
illustrated | Illustrated |
index_date | 2024-07-03T20:51:27Z |
indexdate | 2024-07-10T09:40:37Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527347612 3527347615 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033904640 |
oclc_num | 1347275808 |
open_access_boolean | |
owner | DE-703 DE-1051 |
owner_facet | DE-703 DE-1051 |
physical | xvi, 472 Seiten Illustrationen, Diagramme 25 cm, 1082 g |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | WILEY-VCH |
record_format | marc |
spelling | Biodegradable polymers in the circular plastics economy edited by Michiel Dusselier and Jean-Paul Lange Weinheim, Germany WILEY-VCH [2022] xvi, 472 Seiten Illustrationen, Diagramme 25 cm, 1082 g txt rdacontent n rdamedia nc rdacarrier Kreislaufwirtschaft (DE-588)4361327-5 gnd rswk-swf Biologisch abbaubarer Kunststoff (DE-588)4634464-0 gnd rswk-swf Biopolymere Biopolymers Chemical Engineering Chemie Chemische Verfahrenstechnik Chemistry Industrial Chemistry Nachhaltige u. Grüne Chemie Polymer processing Polymer Science & Technology Polymerverarbeitung Polymerwissenschaft u. -technologie Process Engineering Prozesssteuerung Sustainable Chemistry & Green Chemistry Technische u. Industrielle Chemie CG10: Prozesssteuerung CH30: Technische u. Industrielle Chemie CHC0: Nachhaltige u. Grüne Chemie PY10: Polymerverarbeitung PY20: Biopolymere Biologisch abbaubarer Kunststoff Kreislaufwirtschaft Biologisch abbaubarer Kunststoff (DE-588)4634464-0 s Kreislaufwirtschaft (DE-588)4361327-5 s DE-604 Dusselier, Michiel (DE-588)1267279923 edt Lange, Jean-Paul 1961- (DE-588)1201912113 edt Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-82756-5 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-82757-2 Erscheint auch als Online-Ausgabe 978-3-527-82758-9 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34761-2/ B:DE-101 application/pdf https://d-nb.info/1247293602/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033904640&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p dnb 20220920 DE-101 https://d-nb.info/provenance/plan#dnb 2\p dnb 20220920 DE-101 https://d-nb.info/provenance/plan#dnb 3\p dnb 20220920 DE-101 https://d-nb.info/provenance/plan#dnb |
spellingShingle | Biodegradable polymers in the circular plastics economy Kreislaufwirtschaft (DE-588)4361327-5 gnd Biologisch abbaubarer Kunststoff (DE-588)4634464-0 gnd |
subject_GND | (DE-588)4361327-5 (DE-588)4634464-0 |
title | Biodegradable polymers in the circular plastics economy |
title_auth | Biodegradable polymers in the circular plastics economy |
title_exact_search | Biodegradable polymers in the circular plastics economy |
title_exact_search_txtP | Biodegradable polymers in the circular plastics economy |
title_full | Biodegradable polymers in the circular plastics economy edited by Michiel Dusselier and Jean-Paul Lange |
title_fullStr | Biodegradable polymers in the circular plastics economy edited by Michiel Dusselier and Jean-Paul Lange |
title_full_unstemmed | Biodegradable polymers in the circular plastics economy edited by Michiel Dusselier and Jean-Paul Lange |
title_short | Biodegradable polymers in the circular plastics economy |
title_sort | biodegradable polymers in the circular plastics economy |
topic | Kreislaufwirtschaft (DE-588)4361327-5 gnd Biologisch abbaubarer Kunststoff (DE-588)4634464-0 gnd |
topic_facet | Kreislaufwirtschaft Biologisch abbaubarer Kunststoff |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34761-2/ https://d-nb.info/1247293602/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033904640&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT dusseliermichiel biodegradablepolymersinthecircularplasticseconomy AT langejeanpaul biodegradablepolymersinthecircularplasticseconomy AT wileyvch biodegradablepolymersinthecircularplasticseconomy |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis