Leading Edge Techniques in Forensic Trace Evidence Analysis: More New Trace Analysis Methods
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Newark
John Wiley & Sons, Incorporated
2022
|
Schlagworte: | |
Beschreibung: | 1 Online-Ressource (371 Seiten) |
ISBN: | 9781119591832 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV048523872 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 221020s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781119591832 |q (electronic bk.) |9 9781119591832 | ||
020 | |z 9781119591610 |9 9781119591610 | ||
035 | |a (ZDB-30-PQE)EBC7101512 | ||
035 | |a (ZDB-30-PAD)EBC7101512 | ||
035 | |a (ZDB-89-EBL)EBL7101512 | ||
035 | |a (OCoLC)1346360558 | ||
035 | |a (DE-599)BVBBV048523872 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
100 | 1 | |a Blackledge, Robert D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Leading Edge Techniques in Forensic Trace Evidence Analysis |b More New Trace Analysis Methods |
264 | 1 | |a Newark |b John Wiley & Sons, Incorporated |c 2022 | |
264 | 4 | |c ©2023 | |
300 | |a 1 Online-Ressource (371 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Foreword -- Preface -- Chapter 1 Forensic Analysis of Shimmer Particles in Cosmetic Samples -- 1.1 Introduction -- 1.2 What is Shimmer? -- 1.2.1 Shimmer versus Glitter -- 1.2.2 Shimmer Composition and Use -- 1.3 Shimmer Detection and Collection -- 1.3.1 Detection of Cosmetic Stains -- 1.3.2 Collection of Shimmer Particles -- 1.4 Analysis of Shimmer Particles -- 1.4.1 Sample Extraction and Preparation -- 1.4.2 Digital Microscopy -- 1.4.3 Infrared Spectroscopy -- 1.4.4 Raman Spectroscopy -- 1.4.5 X‐Ray Diffraction -- 1.4.6 Scanning Electron Microscopy - Energy Dispersive X‐Ray Spectroscopy -- 1.5 Ideal Contact Trace -- 1.5.1 Nearly Invisible -- 1.5.2 High Probability of Transfer and Retention -- 1.5.3 Highly Individualistic -- 1.5.4 Easily Collected, Separated, and Concentrated -- 1.5.5 Mere Traces Easily Characterized -- 1.5.6 Searchable via Computerized Database -- 1.5.7 Will Survive Most Environmental Insults -- 1.6 Case Examples -- 1.7 Conclusion -- Acknowledgments -- References -- Chapter 2 Glitter and Other Flake Pigments -- 2.1 Introduction -- 2.2 Glitter Update -- 2.3 Cutting Film into Individual Glitter Particles -- 2.4 Reflectance -- 2.5 Embossed Effects -- 2.6 Color -- 2.7 Specific Gravity -- 2.8 Is It Glitter or a Flake Pigment? -- 2.9 Materials and Processes that Have Been Used to Produce Flake Materials -- 2.9.1 Post Manufacture Modification -- 2.9.2 Polymer Film Flakes - Differences that May Help Discriminate the Flake Source -- 2.9.3 Foil -- 2.9.4 Flake Materials -- 2.9.5 Natural Materials -- 2.9.6 Synthetic Materials -- 2.9.7 Freestanding Flakes -- 2.9.8 Effects -- 2.9.9 Post Manufacture Modification -- 2.9.10 Color -- 2.9.11 Discriminating Between Flakes of Unknown Origin -- 2.9.12 Follow the Yellow Brick Road -- References | |
505 | 8 | |a Chapter 3 X‐ray Photoelectron Spectroscopy -- 3.1 Introduction -- 3.2 Background and Theory -- 3.3 Instrumentation -- 3.3.1 Ultra‐High Vacuum (UHV) -- 3.3.2 X‐ray Source -- 3.3.3 Electron Detector -- 3.3.4 Charge Compensation Source -- 3.3.5 Sample Cleaning - Monatomic Ions -- 3.3.6 Depth Profiling -- 3.3.7 Sample Preparation -- 3.4 Argon‐Ion Cluster Beam Technology -- 3.5 Evidence Type Examples -- 3.5.1 Example 1: Surface Modified Fibers -- 3.5.2 Example 2: Glass -- 3.5.2.1 A -- 3.5.2.2 B -- 3.5.3 Example 3: Hair Fibers with Modifications -- 3.6 Future Directions of XPS and Forensics -- 3.6.1 HAXPES -- 3.6.2 NAPXPS -- 3.7 Conclusions -- Acknowledgements -- References -- Chapter 4 Density Determination and Separation via Magnetic Levitation -- 4.1 Introduction -- 4.2 Objectives of the Work -- 4.3 Guidance to the Reader -- 4.4 Theoretical Basis* -- 4.4.1 What Is MAGLEV? -- 4.4.2 Brief Discussion of Trace Evidence Separation Methods and their Limitations -- 4.4.3 Brief Discussion of Density and Determination Methods -- 4.4.4 Detailed Discussion of Theory* -- 4.5 Preparation for Density Determination Via MAGLEV -- 4.5.1 Choosing the Type of MAGLEV Device: Precision, Accuracy, Working Distance, Sensitivity, and Range of Density -- 4.5.2 Testing the Compatibility Between Trace Evidence and Paramagnetic Media -- 4.5.3 Analysis of Nonpolar Compounds Using MAGLEV -- 4.5.4 Analysis of Polar Compounds Using MAGLEV -- 4.5.5 Calibration -- 4.6 Protocols for Measurement of Density, and Separation Using MAGLEV -- 4.6.1 Basic Protocol for Typical Use of the MAGLEV Device -- 4.6.2 Troubleshooting the Experiments -- 4.7 Trace‐Evidence‐Like Materials That Have Been Analyzed with MAGLEV -- 4.7.1 Bone -- 4.7.2 Glitter and Gunpowder -- 4.7.3 Powdered Drugs, Polymorphs, and Enantiomers -- 4.7.4 Glass -- 4.7.5 Polymers -- 4.7.6 Hair and Dandruff | |
505 | 8 | |a 4.8 Instructions for the Construction of MAGLEV Devices -- 4.9 Conclusion -- References -- Chapter 5 Forensic Applications of Gas Chromatography - Vacuum Ultraviolet Spectroscopy Paired with Mass Spectrometry -- 5.1 Introduction -- 5.2 Background of Mass Spectrometry -- 5.3 Background of Vacuum Ultraviolet Spectroscopy -- 5.4 Combining GC/VUV and GC/MS -- 5.5 Analysis of Fentanyl Analogues -- 5.6 Analysis of Smokeless Powders -- 5.7 Analysis of Lipstick -- 5.8 Analysis of Blood Alcohol Content and Inhalants -- 5.9 Analysis of Fire Debris Samples -- 5.10 Conclusion -- References -- Chapter 6 Surface Acoustic Wave Nebulization‐Mass Spectrometry -- 6.1 Theory and Instrumentation -- 6.2 Analysis of Complex Samples -- 6.2.1 Single Fibers Having Synthetic Organic Dyes and Other Trace Evidence Examples -- 6.2.2 The Case of Denim Fibers -- 6.2.3 From Natural to Synthetic Indigo for Denim Dyeing -- 6.2.3.1 MS and Denim Analysis -- References -- Chapter 7 Elemental Imaging of Forensic Traces with Macro‐ and Micro‐XRF -- 7.1 Introduction -- 7.2 XRF Imaging Methods and Instrumentation -- 7.3 Elemental Imaging of Gun Shot Residues -- 7.4 Using Elemental Markers to Detect and Image Biological Traces -- 7.5 Visualizing Cosmetic and Personal Care Product Stains -- 7.6 Noninvasive Imaging of Hidden and Concealed Forensic Traces -- 7.7 Future Outlook -- Acknowledgments -- References -- Chapter 8 Characterization of Human Head Hairs via Proteomics -- 8.1 Introduction -- 8.2 Human Hair -- 8.2.1 Structure and Role -- 8.2.2 Growth Cycle -- 8.2.3 Chemical Composition -- 8.3 Human Hair as Forensic Evidence: The Investigative Value of Hair -- 8.3.1 Physical Hair Analysis Workflow -- 8.3.2 Microscopy (Physical) in Conjunction with DNA (Chemical) Analysis -- 8.4 Current and Emerging Proteomic Methods for Forensic Human Hair Analysis | |
505 | 8 | |a 8.4.1 Applicability of SAPs and GVPs in Hair Analysis -- 8.5 Current and Emerging Methods for Forensic Human Hair Analysis -- 8.5.1 Nano‐Liquid Chromatography (nLC) with Electrospray Ionization and MS/MS -- 8.5.2 Proteomics Analysis with Tandem/Hybrid Mass Spectrometry -- 8.5.3 Hair Proteome Sequencing Via CE‐MS/MS -- 8.6 Challenges to Implementing Protein Sequencing in Forensic Casework -- 8.6.1 Triage of Evidence and Prioritization for Examination -- 8.6.2 Need for Validated Protocols and Appropriate Quality Assurance/Quality Control Procedures -- 8.6.3 Not Amenable to Databasing vis‐a‐vis CODIS -- 8.6.4 Variable Protein Expression -- 8.7 Conclusion -- Acknowledgments -- References -- Chapter 9 Photo‐induced Force Microscopy -- 9.1 Introduction -- 9.2 Working Principle and Instrumentation -- 9.3 Trace Evidence Examples -- 9.3.1 Fibers -- 9.3.2 Nanoscale Chemical Mapping -- 9.3.3 Individual Glitter and Shimmer Particles -- References -- Chapter 10 Raman and Surface‐Enhanced Raman Scattering (SERS) for Trace Analysis -- 10.1 Introduction -- 10.2 Theory -- 10.2.1 Raman Spectroscopy -- 10.2.2 Enhancement Mechanism in SERS -- 10.2.3 SERS Substrates -- 10.2.4 Probe Molecules -- 10.3 Instrumentation -- 10.3.1 Spectrometer -- 10.3.2 Excitation Lasers -- 10.3.3 Detector -- 10.3.4 Microscope -- 10.3.5 Portable Spectrometers -- 10.4 Forensic Applications -- 10.4.1 Questioned Document -- 10.4.2 Explosives -- 10.4.3 Fibers -- 10.4.4 Paint -- 10.4.5 Fingermarks -- 10.4.6 Fire Accelerants -- 10.4.7 Gunshot Residues -- 10.4.8 Cosmetic Products -- 10.4.9 Other Types of Physical Evidence -- References -- Index -- EULA. | |
653 | 6 | |a Electronic books | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Blackledge, Robert D. |t Leading Edge Techniques in Forensic Trace Evidence Analysis |d Newark : John Wiley & Sons, Incorporated,c2022 |z 9781119591610 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033900720 |
Datensatz im Suchindex
_version_ | 1804184512199917568 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Blackledge, Robert D. |
author_facet | Blackledge, Robert D. |
author_role | aut |
author_sort | Blackledge, Robert D. |
author_variant | r d b rd rdb |
building | Verbundindex |
bvnumber | BV048523872 |
collection | ZDB-30-PQE |
contents | Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Foreword -- Preface -- Chapter 1 Forensic Analysis of Shimmer Particles in Cosmetic Samples -- 1.1 Introduction -- 1.2 What is Shimmer? -- 1.2.1 Shimmer versus Glitter -- 1.2.2 Shimmer Composition and Use -- 1.3 Shimmer Detection and Collection -- 1.3.1 Detection of Cosmetic Stains -- 1.3.2 Collection of Shimmer Particles -- 1.4 Analysis of Shimmer Particles -- 1.4.1 Sample Extraction and Preparation -- 1.4.2 Digital Microscopy -- 1.4.3 Infrared Spectroscopy -- 1.4.4 Raman Spectroscopy -- 1.4.5 X‐Ray Diffraction -- 1.4.6 Scanning Electron Microscopy - Energy Dispersive X‐Ray Spectroscopy -- 1.5 Ideal Contact Trace -- 1.5.1 Nearly Invisible -- 1.5.2 High Probability of Transfer and Retention -- 1.5.3 Highly Individualistic -- 1.5.4 Easily Collected, Separated, and Concentrated -- 1.5.5 Mere Traces Easily Characterized -- 1.5.6 Searchable via Computerized Database -- 1.5.7 Will Survive Most Environmental Insults -- 1.6 Case Examples -- 1.7 Conclusion -- Acknowledgments -- References -- Chapter 2 Glitter and Other Flake Pigments -- 2.1 Introduction -- 2.2 Glitter Update -- 2.3 Cutting Film into Individual Glitter Particles -- 2.4 Reflectance -- 2.5 Embossed Effects -- 2.6 Color -- 2.7 Specific Gravity -- 2.8 Is It Glitter or a Flake Pigment? -- 2.9 Materials and Processes that Have Been Used to Produce Flake Materials -- 2.9.1 Post Manufacture Modification -- 2.9.2 Polymer Film Flakes - Differences that May Help Discriminate the Flake Source -- 2.9.3 Foil -- 2.9.4 Flake Materials -- 2.9.5 Natural Materials -- 2.9.6 Synthetic Materials -- 2.9.7 Freestanding Flakes -- 2.9.8 Effects -- 2.9.9 Post Manufacture Modification -- 2.9.10 Color -- 2.9.11 Discriminating Between Flakes of Unknown Origin -- 2.9.12 Follow the Yellow Brick Road -- References Chapter 3 X‐ray Photoelectron Spectroscopy -- 3.1 Introduction -- 3.2 Background and Theory -- 3.3 Instrumentation -- 3.3.1 Ultra‐High Vacuum (UHV) -- 3.3.2 X‐ray Source -- 3.3.3 Electron Detector -- 3.3.4 Charge Compensation Source -- 3.3.5 Sample Cleaning - Monatomic Ions -- 3.3.6 Depth Profiling -- 3.3.7 Sample Preparation -- 3.4 Argon‐Ion Cluster Beam Technology -- 3.5 Evidence Type Examples -- 3.5.1 Example 1: Surface Modified Fibers -- 3.5.2 Example 2: Glass -- 3.5.2.1 A -- 3.5.2.2 B -- 3.5.3 Example 3: Hair Fibers with Modifications -- 3.6 Future Directions of XPS and Forensics -- 3.6.1 HAXPES -- 3.6.2 NAPXPS -- 3.7 Conclusions -- Acknowledgements -- References -- Chapter 4 Density Determination and Separation via Magnetic Levitation -- 4.1 Introduction -- 4.2 Objectives of the Work -- 4.3 Guidance to the Reader -- 4.4 Theoretical Basis* -- 4.4.1 What Is MAGLEV? -- 4.4.2 Brief Discussion of Trace Evidence Separation Methods and their Limitations -- 4.4.3 Brief Discussion of Density and Determination Methods -- 4.4.4 Detailed Discussion of Theory* -- 4.5 Preparation for Density Determination Via MAGLEV -- 4.5.1 Choosing the Type of MAGLEV Device: Precision, Accuracy, Working Distance, Sensitivity, and Range of Density -- 4.5.2 Testing the Compatibility Between Trace Evidence and Paramagnetic Media -- 4.5.3 Analysis of Nonpolar Compounds Using MAGLEV -- 4.5.4 Analysis of Polar Compounds Using MAGLEV -- 4.5.5 Calibration -- 4.6 Protocols for Measurement of Density, and Separation Using MAGLEV -- 4.6.1 Basic Protocol for Typical Use of the MAGLEV Device -- 4.6.2 Troubleshooting the Experiments -- 4.7 Trace‐Evidence‐Like Materials That Have Been Analyzed with MAGLEV -- 4.7.1 Bone -- 4.7.2 Glitter and Gunpowder -- 4.7.3 Powdered Drugs, Polymorphs, and Enantiomers -- 4.7.4 Glass -- 4.7.5 Polymers -- 4.7.6 Hair and Dandruff 4.8 Instructions for the Construction of MAGLEV Devices -- 4.9 Conclusion -- References -- Chapter 5 Forensic Applications of Gas Chromatography - Vacuum Ultraviolet Spectroscopy Paired with Mass Spectrometry -- 5.1 Introduction -- 5.2 Background of Mass Spectrometry -- 5.3 Background of Vacuum Ultraviolet Spectroscopy -- 5.4 Combining GC/VUV and GC/MS -- 5.5 Analysis of Fentanyl Analogues -- 5.6 Analysis of Smokeless Powders -- 5.7 Analysis of Lipstick -- 5.8 Analysis of Blood Alcohol Content and Inhalants -- 5.9 Analysis of Fire Debris Samples -- 5.10 Conclusion -- References -- Chapter 6 Surface Acoustic Wave Nebulization‐Mass Spectrometry -- 6.1 Theory and Instrumentation -- 6.2 Analysis of Complex Samples -- 6.2.1 Single Fibers Having Synthetic Organic Dyes and Other Trace Evidence Examples -- 6.2.2 The Case of Denim Fibers -- 6.2.3 From Natural to Synthetic Indigo for Denim Dyeing -- 6.2.3.1 MS and Denim Analysis -- References -- Chapter 7 Elemental Imaging of Forensic Traces with Macro‐ and Micro‐XRF -- 7.1 Introduction -- 7.2 XRF Imaging Methods and Instrumentation -- 7.3 Elemental Imaging of Gun Shot Residues -- 7.4 Using Elemental Markers to Detect and Image Biological Traces -- 7.5 Visualizing Cosmetic and Personal Care Product Stains -- 7.6 Noninvasive Imaging of Hidden and Concealed Forensic Traces -- 7.7 Future Outlook -- Acknowledgments -- References -- Chapter 8 Characterization of Human Head Hairs via Proteomics -- 8.1 Introduction -- 8.2 Human Hair -- 8.2.1 Structure and Role -- 8.2.2 Growth Cycle -- 8.2.3 Chemical Composition -- 8.3 Human Hair as Forensic Evidence: The Investigative Value of Hair -- 8.3.1 Physical Hair Analysis Workflow -- 8.3.2 Microscopy (Physical) in Conjunction with DNA (Chemical) Analysis -- 8.4 Current and Emerging Proteomic Methods for Forensic Human Hair Analysis 8.4.1 Applicability of SAPs and GVPs in Hair Analysis -- 8.5 Current and Emerging Methods for Forensic Human Hair Analysis -- 8.5.1 Nano‐Liquid Chromatography (nLC) with Electrospray Ionization and MS/MS -- 8.5.2 Proteomics Analysis with Tandem/Hybrid Mass Spectrometry -- 8.5.3 Hair Proteome Sequencing Via CE‐MS/MS -- 8.6 Challenges to Implementing Protein Sequencing in Forensic Casework -- 8.6.1 Triage of Evidence and Prioritization for Examination -- 8.6.2 Need for Validated Protocols and Appropriate Quality Assurance/Quality Control Procedures -- 8.6.3 Not Amenable to Databasing vis‐a‐vis CODIS -- 8.6.4 Variable Protein Expression -- 8.7 Conclusion -- Acknowledgments -- References -- Chapter 9 Photo‐induced Force Microscopy -- 9.1 Introduction -- 9.2 Working Principle and Instrumentation -- 9.3 Trace Evidence Examples -- 9.3.1 Fibers -- 9.3.2 Nanoscale Chemical Mapping -- 9.3.3 Individual Glitter and Shimmer Particles -- References -- Chapter 10 Raman and Surface‐Enhanced Raman Scattering (SERS) for Trace Analysis -- 10.1 Introduction -- 10.2 Theory -- 10.2.1 Raman Spectroscopy -- 10.2.2 Enhancement Mechanism in SERS -- 10.2.3 SERS Substrates -- 10.2.4 Probe Molecules -- 10.3 Instrumentation -- 10.3.1 Spectrometer -- 10.3.2 Excitation Lasers -- 10.3.3 Detector -- 10.3.4 Microscope -- 10.3.5 Portable Spectrometers -- 10.4 Forensic Applications -- 10.4.1 Questioned Document -- 10.4.2 Explosives -- 10.4.3 Fibers -- 10.4.4 Paint -- 10.4.5 Fingermarks -- 10.4.6 Fire Accelerants -- 10.4.7 Gunshot Residues -- 10.4.8 Cosmetic Products -- 10.4.9 Other Types of Physical Evidence -- References -- Index -- EULA. |
ctrlnum | (ZDB-30-PQE)EBC7101512 (ZDB-30-PAD)EBC7101512 (ZDB-89-EBL)EBL7101512 (OCoLC)1346360558 (DE-599)BVBBV048523872 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08498nmm a2200385 c 4500</leader><controlfield tag="001">BV048523872</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">221020s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781119591832</subfield><subfield code="q">(electronic bk.)</subfield><subfield code="9">9781119591832</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9781119591610</subfield><subfield code="9">9781119591610</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC7101512</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC7101512</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL7101512</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1346360558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048523872</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blackledge, Robert D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Leading Edge Techniques in Forensic Trace Evidence Analysis</subfield><subfield code="b">More New Trace Analysis Methods</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Newark</subfield><subfield code="b">John Wiley & Sons, Incorporated</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (371 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Foreword -- Preface -- Chapter 1 Forensic Analysis of Shimmer Particles in Cosmetic Samples -- 1.1 Introduction -- 1.2 What is Shimmer? -- 1.2.1 Shimmer versus Glitter -- 1.2.2 Shimmer Composition and Use -- 1.3 Shimmer Detection and Collection -- 1.3.1 Detection of Cosmetic Stains -- 1.3.2 Collection of Shimmer Particles -- 1.4 Analysis of Shimmer Particles -- 1.4.1 Sample Extraction and Preparation -- 1.4.2 Digital Microscopy -- 1.4.3 Infrared Spectroscopy -- 1.4.4 Raman Spectroscopy -- 1.4.5 X‐Ray Diffraction -- 1.4.6 Scanning Electron Microscopy - Energy Dispersive X‐Ray Spectroscopy -- 1.5 Ideal Contact Trace -- 1.5.1 Nearly Invisible -- 1.5.2 High Probability of Transfer and Retention -- 1.5.3 Highly Individualistic -- 1.5.4 Easily Collected, Separated, and Concentrated -- 1.5.5 Mere Traces Easily Characterized -- 1.5.6 Searchable via Computerized Database -- 1.5.7 Will Survive Most Environmental Insults -- 1.6 Case Examples -- 1.7 Conclusion -- Acknowledgments -- References -- Chapter 2 Glitter and Other Flake Pigments -- 2.1 Introduction -- 2.2 Glitter Update -- 2.3 Cutting Film into Individual Glitter Particles -- 2.4 Reflectance -- 2.5 Embossed Effects -- 2.6 Color -- 2.7 Specific Gravity -- 2.8 Is It Glitter or a Flake Pigment? -- 2.9 Materials and Processes that Have Been Used to Produce Flake Materials -- 2.9.1 Post Manufacture Modification -- 2.9.2 Polymer Film Flakes - Differences that May Help Discriminate the Flake Source -- 2.9.3 Foil -- 2.9.4 Flake Materials -- 2.9.5 Natural Materials -- 2.9.6 Synthetic Materials -- 2.9.7 Freestanding Flakes -- 2.9.8 Effects -- 2.9.9 Post Manufacture Modification -- 2.9.10 Color -- 2.9.11 Discriminating Between Flakes of Unknown Origin -- 2.9.12 Follow the Yellow Brick Road -- References</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 3 X‐ray Photoelectron Spectroscopy -- 3.1 Introduction -- 3.2 Background and Theory -- 3.3 Instrumentation -- 3.3.1 Ultra‐High Vacuum (UHV) -- 3.3.2 X‐ray Source -- 3.3.3 Electron Detector -- 3.3.4 Charge Compensation Source -- 3.3.5 Sample Cleaning - Monatomic Ions -- 3.3.6 Depth Profiling -- 3.3.7 Sample Preparation -- 3.4 Argon‐Ion Cluster Beam Technology -- 3.5 Evidence Type Examples -- 3.5.1 Example 1: Surface Modified Fibers -- 3.5.2 Example 2: Glass -- 3.5.2.1 A -- 3.5.2.2 B -- 3.5.3 Example 3: Hair Fibers with Modifications -- 3.6 Future Directions of XPS and Forensics -- 3.6.1 HAXPES -- 3.6.2 NAPXPS -- 3.7 Conclusions -- Acknowledgements -- References -- Chapter 4 Density Determination and Separation via Magnetic Levitation -- 4.1 Introduction -- 4.2 Objectives of the Work -- 4.3 Guidance to the Reader -- 4.4 Theoretical Basis* -- 4.4.1 What Is MAGLEV? -- 4.4.2 Brief Discussion of Trace Evidence Separation Methods and their Limitations -- 4.4.3 Brief Discussion of Density and Determination Methods -- 4.4.4 Detailed Discussion of Theory* -- 4.5 Preparation for Density Determination Via MAGLEV -- 4.5.1 Choosing the Type of MAGLEV Device: Precision, Accuracy, Working Distance, Sensitivity, and Range of Density -- 4.5.2 Testing the Compatibility Between Trace Evidence and Paramagnetic Media -- 4.5.3 Analysis of Nonpolar Compounds Using MAGLEV -- 4.5.4 Analysis of Polar Compounds Using MAGLEV -- 4.5.5 Calibration -- 4.6 Protocols for Measurement of Density, and Separation Using MAGLEV -- 4.6.1 Basic Protocol for Typical Use of the MAGLEV Device -- 4.6.2 Troubleshooting the Experiments -- 4.7 Trace‐Evidence‐Like Materials That Have Been Analyzed with MAGLEV -- 4.7.1 Bone -- 4.7.2 Glitter and Gunpowder -- 4.7.3 Powdered Drugs, Polymorphs, and Enantiomers -- 4.7.4 Glass -- 4.7.5 Polymers -- 4.7.6 Hair and Dandruff</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.8 Instructions for the Construction of MAGLEV Devices -- 4.9 Conclusion -- References -- Chapter 5 Forensic Applications of Gas Chromatography - Vacuum Ultraviolet Spectroscopy Paired with Mass Spectrometry -- 5.1 Introduction -- 5.2 Background of Mass Spectrometry -- 5.3 Background of Vacuum Ultraviolet Spectroscopy -- 5.4 Combining GC/VUV and GC/MS -- 5.5 Analysis of Fentanyl Analogues -- 5.6 Analysis of Smokeless Powders -- 5.7 Analysis of Lipstick -- 5.8 Analysis of Blood Alcohol Content and Inhalants -- 5.9 Analysis of Fire Debris Samples -- 5.10 Conclusion -- References -- Chapter 6 Surface Acoustic Wave Nebulization‐Mass Spectrometry -- 6.1 Theory and Instrumentation -- 6.2 Analysis of Complex Samples -- 6.2.1 Single Fibers Having Synthetic Organic Dyes and Other Trace Evidence Examples -- 6.2.2 The Case of Denim Fibers -- 6.2.3 From Natural to Synthetic Indigo for Denim Dyeing -- 6.2.3.1 MS and Denim Analysis -- References -- Chapter 7 Elemental Imaging of Forensic Traces with Macro‐ and Micro‐XRF -- 7.1 Introduction -- 7.2 XRF Imaging Methods and Instrumentation -- 7.3 Elemental Imaging of Gun Shot Residues -- 7.4 Using Elemental Markers to Detect and Image Biological Traces -- 7.5 Visualizing Cosmetic and Personal Care Product Stains -- 7.6 Noninvasive Imaging of Hidden and Concealed Forensic Traces -- 7.7 Future Outlook -- Acknowledgments -- References -- Chapter 8 Characterization of Human Head Hairs via Proteomics -- 8.1 Introduction -- 8.2 Human Hair -- 8.2.1 Structure and Role -- 8.2.2 Growth Cycle -- 8.2.3 Chemical Composition -- 8.3 Human Hair as Forensic Evidence: The Investigative Value of Hair -- 8.3.1 Physical Hair Analysis Workflow -- 8.3.2 Microscopy (Physical) in Conjunction with DNA (Chemical) Analysis -- 8.4 Current and Emerging Proteomic Methods for Forensic Human Hair Analysis</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.4.1 Applicability of SAPs and GVPs in Hair Analysis -- 8.5 Current and Emerging Methods for Forensic Human Hair Analysis -- 8.5.1 Nano‐Liquid Chromatography (nLC) with Electrospray Ionization and MS/MS -- 8.5.2 Proteomics Analysis with Tandem/Hybrid Mass Spectrometry -- 8.5.3 Hair Proteome Sequencing Via CE‐MS/MS -- 8.6 Challenges to Implementing Protein Sequencing in Forensic Casework -- 8.6.1 Triage of Evidence and Prioritization for Examination -- 8.6.2 Need for Validated Protocols and Appropriate Quality Assurance/Quality Control Procedures -- 8.6.3 Not Amenable to Databasing vis‐a‐vis CODIS -- 8.6.4 Variable Protein Expression -- 8.7 Conclusion -- Acknowledgments -- References -- Chapter 9 Photo‐induced Force Microscopy -- 9.1 Introduction -- 9.2 Working Principle and Instrumentation -- 9.3 Trace Evidence Examples -- 9.3.1 Fibers -- 9.3.2 Nanoscale Chemical Mapping -- 9.3.3 Individual Glitter and Shimmer Particles -- References -- Chapter 10 Raman and Surface‐Enhanced Raman Scattering (SERS) for Trace Analysis -- 10.1 Introduction -- 10.2 Theory -- 10.2.1 Raman Spectroscopy -- 10.2.2 Enhancement Mechanism in SERS -- 10.2.3 SERS Substrates -- 10.2.4 Probe Molecules -- 10.3 Instrumentation -- 10.3.1 Spectrometer -- 10.3.2 Excitation Lasers -- 10.3.3 Detector -- 10.3.4 Microscope -- 10.3.5 Portable Spectrometers -- 10.4 Forensic Applications -- 10.4.1 Questioned Document -- 10.4.2 Explosives -- 10.4.3 Fibers -- 10.4.4 Paint -- 10.4.5 Fingermarks -- 10.4.6 Fire Accelerants -- 10.4.7 Gunshot Residues -- 10.4.8 Cosmetic Products -- 10.4.9 Other Types of Physical Evidence -- References -- Index -- EULA.</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Blackledge, Robert D.</subfield><subfield code="t">Leading Edge Techniques in Forensic Trace Evidence Analysis</subfield><subfield code="d">Newark : John Wiley & Sons, Incorporated,c2022</subfield><subfield code="z">9781119591610</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033900720</subfield></datafield></record></collection> |
id | DE-604.BV048523872 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:50:26Z |
indexdate | 2024-07-10T09:40:31Z |
institution | BVB |
isbn | 9781119591832 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033900720 |
oclc_num | 1346360558 |
open_access_boolean | |
physical | 1 Online-Ressource (371 Seiten) |
psigel | ZDB-30-PQE |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | John Wiley & Sons, Incorporated |
record_format | marc |
spelling | Blackledge, Robert D. Verfasser aut Leading Edge Techniques in Forensic Trace Evidence Analysis More New Trace Analysis Methods Newark John Wiley & Sons, Incorporated 2022 ©2023 1 Online-Ressource (371 Seiten) txt rdacontent c rdamedia cr rdacarrier Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Foreword -- Preface -- Chapter 1 Forensic Analysis of Shimmer Particles in Cosmetic Samples -- 1.1 Introduction -- 1.2 What is Shimmer? -- 1.2.1 Shimmer versus Glitter -- 1.2.2 Shimmer Composition and Use -- 1.3 Shimmer Detection and Collection -- 1.3.1 Detection of Cosmetic Stains -- 1.3.2 Collection of Shimmer Particles -- 1.4 Analysis of Shimmer Particles -- 1.4.1 Sample Extraction and Preparation -- 1.4.2 Digital Microscopy -- 1.4.3 Infrared Spectroscopy -- 1.4.4 Raman Spectroscopy -- 1.4.5 X‐Ray Diffraction -- 1.4.6 Scanning Electron Microscopy - Energy Dispersive X‐Ray Spectroscopy -- 1.5 Ideal Contact Trace -- 1.5.1 Nearly Invisible -- 1.5.2 High Probability of Transfer and Retention -- 1.5.3 Highly Individualistic -- 1.5.4 Easily Collected, Separated, and Concentrated -- 1.5.5 Mere Traces Easily Characterized -- 1.5.6 Searchable via Computerized Database -- 1.5.7 Will Survive Most Environmental Insults -- 1.6 Case Examples -- 1.7 Conclusion -- Acknowledgments -- References -- Chapter 2 Glitter and Other Flake Pigments -- 2.1 Introduction -- 2.2 Glitter Update -- 2.3 Cutting Film into Individual Glitter Particles -- 2.4 Reflectance -- 2.5 Embossed Effects -- 2.6 Color -- 2.7 Specific Gravity -- 2.8 Is It Glitter or a Flake Pigment? -- 2.9 Materials and Processes that Have Been Used to Produce Flake Materials -- 2.9.1 Post Manufacture Modification -- 2.9.2 Polymer Film Flakes - Differences that May Help Discriminate the Flake Source -- 2.9.3 Foil -- 2.9.4 Flake Materials -- 2.9.5 Natural Materials -- 2.9.6 Synthetic Materials -- 2.9.7 Freestanding Flakes -- 2.9.8 Effects -- 2.9.9 Post Manufacture Modification -- 2.9.10 Color -- 2.9.11 Discriminating Between Flakes of Unknown Origin -- 2.9.12 Follow the Yellow Brick Road -- References Chapter 3 X‐ray Photoelectron Spectroscopy -- 3.1 Introduction -- 3.2 Background and Theory -- 3.3 Instrumentation -- 3.3.1 Ultra‐High Vacuum (UHV) -- 3.3.2 X‐ray Source -- 3.3.3 Electron Detector -- 3.3.4 Charge Compensation Source -- 3.3.5 Sample Cleaning - Monatomic Ions -- 3.3.6 Depth Profiling -- 3.3.7 Sample Preparation -- 3.4 Argon‐Ion Cluster Beam Technology -- 3.5 Evidence Type Examples -- 3.5.1 Example 1: Surface Modified Fibers -- 3.5.2 Example 2: Glass -- 3.5.2.1 A -- 3.5.2.2 B -- 3.5.3 Example 3: Hair Fibers with Modifications -- 3.6 Future Directions of XPS and Forensics -- 3.6.1 HAXPES -- 3.6.2 NAPXPS -- 3.7 Conclusions -- Acknowledgements -- References -- Chapter 4 Density Determination and Separation via Magnetic Levitation -- 4.1 Introduction -- 4.2 Objectives of the Work -- 4.3 Guidance to the Reader -- 4.4 Theoretical Basis* -- 4.4.1 What Is MAGLEV? -- 4.4.2 Brief Discussion of Trace Evidence Separation Methods and their Limitations -- 4.4.3 Brief Discussion of Density and Determination Methods -- 4.4.4 Detailed Discussion of Theory* -- 4.5 Preparation for Density Determination Via MAGLEV -- 4.5.1 Choosing the Type of MAGLEV Device: Precision, Accuracy, Working Distance, Sensitivity, and Range of Density -- 4.5.2 Testing the Compatibility Between Trace Evidence and Paramagnetic Media -- 4.5.3 Analysis of Nonpolar Compounds Using MAGLEV -- 4.5.4 Analysis of Polar Compounds Using MAGLEV -- 4.5.5 Calibration -- 4.6 Protocols for Measurement of Density, and Separation Using MAGLEV -- 4.6.1 Basic Protocol for Typical Use of the MAGLEV Device -- 4.6.2 Troubleshooting the Experiments -- 4.7 Trace‐Evidence‐Like Materials That Have Been Analyzed with MAGLEV -- 4.7.1 Bone -- 4.7.2 Glitter and Gunpowder -- 4.7.3 Powdered Drugs, Polymorphs, and Enantiomers -- 4.7.4 Glass -- 4.7.5 Polymers -- 4.7.6 Hair and Dandruff 4.8 Instructions for the Construction of MAGLEV Devices -- 4.9 Conclusion -- References -- Chapter 5 Forensic Applications of Gas Chromatography - Vacuum Ultraviolet Spectroscopy Paired with Mass Spectrometry -- 5.1 Introduction -- 5.2 Background of Mass Spectrometry -- 5.3 Background of Vacuum Ultraviolet Spectroscopy -- 5.4 Combining GC/VUV and GC/MS -- 5.5 Analysis of Fentanyl Analogues -- 5.6 Analysis of Smokeless Powders -- 5.7 Analysis of Lipstick -- 5.8 Analysis of Blood Alcohol Content and Inhalants -- 5.9 Analysis of Fire Debris Samples -- 5.10 Conclusion -- References -- Chapter 6 Surface Acoustic Wave Nebulization‐Mass Spectrometry -- 6.1 Theory and Instrumentation -- 6.2 Analysis of Complex Samples -- 6.2.1 Single Fibers Having Synthetic Organic Dyes and Other Trace Evidence Examples -- 6.2.2 The Case of Denim Fibers -- 6.2.3 From Natural to Synthetic Indigo for Denim Dyeing -- 6.2.3.1 MS and Denim Analysis -- References -- Chapter 7 Elemental Imaging of Forensic Traces with Macro‐ and Micro‐XRF -- 7.1 Introduction -- 7.2 XRF Imaging Methods and Instrumentation -- 7.3 Elemental Imaging of Gun Shot Residues -- 7.4 Using Elemental Markers to Detect and Image Biological Traces -- 7.5 Visualizing Cosmetic and Personal Care Product Stains -- 7.6 Noninvasive Imaging of Hidden and Concealed Forensic Traces -- 7.7 Future Outlook -- Acknowledgments -- References -- Chapter 8 Characterization of Human Head Hairs via Proteomics -- 8.1 Introduction -- 8.2 Human Hair -- 8.2.1 Structure and Role -- 8.2.2 Growth Cycle -- 8.2.3 Chemical Composition -- 8.3 Human Hair as Forensic Evidence: The Investigative Value of Hair -- 8.3.1 Physical Hair Analysis Workflow -- 8.3.2 Microscopy (Physical) in Conjunction with DNA (Chemical) Analysis -- 8.4 Current and Emerging Proteomic Methods for Forensic Human Hair Analysis 8.4.1 Applicability of SAPs and GVPs in Hair Analysis -- 8.5 Current and Emerging Methods for Forensic Human Hair Analysis -- 8.5.1 Nano‐Liquid Chromatography (nLC) with Electrospray Ionization and MS/MS -- 8.5.2 Proteomics Analysis with Tandem/Hybrid Mass Spectrometry -- 8.5.3 Hair Proteome Sequencing Via CE‐MS/MS -- 8.6 Challenges to Implementing Protein Sequencing in Forensic Casework -- 8.6.1 Triage of Evidence and Prioritization for Examination -- 8.6.2 Need for Validated Protocols and Appropriate Quality Assurance/Quality Control Procedures -- 8.6.3 Not Amenable to Databasing vis‐a‐vis CODIS -- 8.6.4 Variable Protein Expression -- 8.7 Conclusion -- Acknowledgments -- References -- Chapter 9 Photo‐induced Force Microscopy -- 9.1 Introduction -- 9.2 Working Principle and Instrumentation -- 9.3 Trace Evidence Examples -- 9.3.1 Fibers -- 9.3.2 Nanoscale Chemical Mapping -- 9.3.3 Individual Glitter and Shimmer Particles -- References -- Chapter 10 Raman and Surface‐Enhanced Raman Scattering (SERS) for Trace Analysis -- 10.1 Introduction -- 10.2 Theory -- 10.2.1 Raman Spectroscopy -- 10.2.2 Enhancement Mechanism in SERS -- 10.2.3 SERS Substrates -- 10.2.4 Probe Molecules -- 10.3 Instrumentation -- 10.3.1 Spectrometer -- 10.3.2 Excitation Lasers -- 10.3.3 Detector -- 10.3.4 Microscope -- 10.3.5 Portable Spectrometers -- 10.4 Forensic Applications -- 10.4.1 Questioned Document -- 10.4.2 Explosives -- 10.4.3 Fibers -- 10.4.4 Paint -- 10.4.5 Fingermarks -- 10.4.6 Fire Accelerants -- 10.4.7 Gunshot Residues -- 10.4.8 Cosmetic Products -- 10.4.9 Other Types of Physical Evidence -- References -- Index -- EULA. Electronic books Erscheint auch als Druck-Ausgabe Blackledge, Robert D. Leading Edge Techniques in Forensic Trace Evidence Analysis Newark : John Wiley & Sons, Incorporated,c2022 9781119591610 |
spellingShingle | Blackledge, Robert D. Leading Edge Techniques in Forensic Trace Evidence Analysis More New Trace Analysis Methods Cover -- Title Page -- Copyright -- Contents -- List of Contributors -- Foreword -- Preface -- Chapter 1 Forensic Analysis of Shimmer Particles in Cosmetic Samples -- 1.1 Introduction -- 1.2 What is Shimmer? -- 1.2.1 Shimmer versus Glitter -- 1.2.2 Shimmer Composition and Use -- 1.3 Shimmer Detection and Collection -- 1.3.1 Detection of Cosmetic Stains -- 1.3.2 Collection of Shimmer Particles -- 1.4 Analysis of Shimmer Particles -- 1.4.1 Sample Extraction and Preparation -- 1.4.2 Digital Microscopy -- 1.4.3 Infrared Spectroscopy -- 1.4.4 Raman Spectroscopy -- 1.4.5 X‐Ray Diffraction -- 1.4.6 Scanning Electron Microscopy - Energy Dispersive X‐Ray Spectroscopy -- 1.5 Ideal Contact Trace -- 1.5.1 Nearly Invisible -- 1.5.2 High Probability of Transfer and Retention -- 1.5.3 Highly Individualistic -- 1.5.4 Easily Collected, Separated, and Concentrated -- 1.5.5 Mere Traces Easily Characterized -- 1.5.6 Searchable via Computerized Database -- 1.5.7 Will Survive Most Environmental Insults -- 1.6 Case Examples -- 1.7 Conclusion -- Acknowledgments -- References -- Chapter 2 Glitter and Other Flake Pigments -- 2.1 Introduction -- 2.2 Glitter Update -- 2.3 Cutting Film into Individual Glitter Particles -- 2.4 Reflectance -- 2.5 Embossed Effects -- 2.6 Color -- 2.7 Specific Gravity -- 2.8 Is It Glitter or a Flake Pigment? -- 2.9 Materials and Processes that Have Been Used to Produce Flake Materials -- 2.9.1 Post Manufacture Modification -- 2.9.2 Polymer Film Flakes - Differences that May Help Discriminate the Flake Source -- 2.9.3 Foil -- 2.9.4 Flake Materials -- 2.9.5 Natural Materials -- 2.9.6 Synthetic Materials -- 2.9.7 Freestanding Flakes -- 2.9.8 Effects -- 2.9.9 Post Manufacture Modification -- 2.9.10 Color -- 2.9.11 Discriminating Between Flakes of Unknown Origin -- 2.9.12 Follow the Yellow Brick Road -- References Chapter 3 X‐ray Photoelectron Spectroscopy -- 3.1 Introduction -- 3.2 Background and Theory -- 3.3 Instrumentation -- 3.3.1 Ultra‐High Vacuum (UHV) -- 3.3.2 X‐ray Source -- 3.3.3 Electron Detector -- 3.3.4 Charge Compensation Source -- 3.3.5 Sample Cleaning - Monatomic Ions -- 3.3.6 Depth Profiling -- 3.3.7 Sample Preparation -- 3.4 Argon‐Ion Cluster Beam Technology -- 3.5 Evidence Type Examples -- 3.5.1 Example 1: Surface Modified Fibers -- 3.5.2 Example 2: Glass -- 3.5.2.1 A -- 3.5.2.2 B -- 3.5.3 Example 3: Hair Fibers with Modifications -- 3.6 Future Directions of XPS and Forensics -- 3.6.1 HAXPES -- 3.6.2 NAPXPS -- 3.7 Conclusions -- Acknowledgements -- References -- Chapter 4 Density Determination and Separation via Magnetic Levitation -- 4.1 Introduction -- 4.2 Objectives of the Work -- 4.3 Guidance to the Reader -- 4.4 Theoretical Basis* -- 4.4.1 What Is MAGLEV? -- 4.4.2 Brief Discussion of Trace Evidence Separation Methods and their Limitations -- 4.4.3 Brief Discussion of Density and Determination Methods -- 4.4.4 Detailed Discussion of Theory* -- 4.5 Preparation for Density Determination Via MAGLEV -- 4.5.1 Choosing the Type of MAGLEV Device: Precision, Accuracy, Working Distance, Sensitivity, and Range of Density -- 4.5.2 Testing the Compatibility Between Trace Evidence and Paramagnetic Media -- 4.5.3 Analysis of Nonpolar Compounds Using MAGLEV -- 4.5.4 Analysis of Polar Compounds Using MAGLEV -- 4.5.5 Calibration -- 4.6 Protocols for Measurement of Density, and Separation Using MAGLEV -- 4.6.1 Basic Protocol for Typical Use of the MAGLEV Device -- 4.6.2 Troubleshooting the Experiments -- 4.7 Trace‐Evidence‐Like Materials That Have Been Analyzed with MAGLEV -- 4.7.1 Bone -- 4.7.2 Glitter and Gunpowder -- 4.7.3 Powdered Drugs, Polymorphs, and Enantiomers -- 4.7.4 Glass -- 4.7.5 Polymers -- 4.7.6 Hair and Dandruff 4.8 Instructions for the Construction of MAGLEV Devices -- 4.9 Conclusion -- References -- Chapter 5 Forensic Applications of Gas Chromatography - Vacuum Ultraviolet Spectroscopy Paired with Mass Spectrometry -- 5.1 Introduction -- 5.2 Background of Mass Spectrometry -- 5.3 Background of Vacuum Ultraviolet Spectroscopy -- 5.4 Combining GC/VUV and GC/MS -- 5.5 Analysis of Fentanyl Analogues -- 5.6 Analysis of Smokeless Powders -- 5.7 Analysis of Lipstick -- 5.8 Analysis of Blood Alcohol Content and Inhalants -- 5.9 Analysis of Fire Debris Samples -- 5.10 Conclusion -- References -- Chapter 6 Surface Acoustic Wave Nebulization‐Mass Spectrometry -- 6.1 Theory and Instrumentation -- 6.2 Analysis of Complex Samples -- 6.2.1 Single Fibers Having Synthetic Organic Dyes and Other Trace Evidence Examples -- 6.2.2 The Case of Denim Fibers -- 6.2.3 From Natural to Synthetic Indigo for Denim Dyeing -- 6.2.3.1 MS and Denim Analysis -- References -- Chapter 7 Elemental Imaging of Forensic Traces with Macro‐ and Micro‐XRF -- 7.1 Introduction -- 7.2 XRF Imaging Methods and Instrumentation -- 7.3 Elemental Imaging of Gun Shot Residues -- 7.4 Using Elemental Markers to Detect and Image Biological Traces -- 7.5 Visualizing Cosmetic and Personal Care Product Stains -- 7.6 Noninvasive Imaging of Hidden and Concealed Forensic Traces -- 7.7 Future Outlook -- Acknowledgments -- References -- Chapter 8 Characterization of Human Head Hairs via Proteomics -- 8.1 Introduction -- 8.2 Human Hair -- 8.2.1 Structure and Role -- 8.2.2 Growth Cycle -- 8.2.3 Chemical Composition -- 8.3 Human Hair as Forensic Evidence: The Investigative Value of Hair -- 8.3.1 Physical Hair Analysis Workflow -- 8.3.2 Microscopy (Physical) in Conjunction with DNA (Chemical) Analysis -- 8.4 Current and Emerging Proteomic Methods for Forensic Human Hair Analysis 8.4.1 Applicability of SAPs and GVPs in Hair Analysis -- 8.5 Current and Emerging Methods for Forensic Human Hair Analysis -- 8.5.1 Nano‐Liquid Chromatography (nLC) with Electrospray Ionization and MS/MS -- 8.5.2 Proteomics Analysis with Tandem/Hybrid Mass Spectrometry -- 8.5.3 Hair Proteome Sequencing Via CE‐MS/MS -- 8.6 Challenges to Implementing Protein Sequencing in Forensic Casework -- 8.6.1 Triage of Evidence and Prioritization for Examination -- 8.6.2 Need for Validated Protocols and Appropriate Quality Assurance/Quality Control Procedures -- 8.6.3 Not Amenable to Databasing vis‐a‐vis CODIS -- 8.6.4 Variable Protein Expression -- 8.7 Conclusion -- Acknowledgments -- References -- Chapter 9 Photo‐induced Force Microscopy -- 9.1 Introduction -- 9.2 Working Principle and Instrumentation -- 9.3 Trace Evidence Examples -- 9.3.1 Fibers -- 9.3.2 Nanoscale Chemical Mapping -- 9.3.3 Individual Glitter and Shimmer Particles -- References -- Chapter 10 Raman and Surface‐Enhanced Raman Scattering (SERS) for Trace Analysis -- 10.1 Introduction -- 10.2 Theory -- 10.2.1 Raman Spectroscopy -- 10.2.2 Enhancement Mechanism in SERS -- 10.2.3 SERS Substrates -- 10.2.4 Probe Molecules -- 10.3 Instrumentation -- 10.3.1 Spectrometer -- 10.3.2 Excitation Lasers -- 10.3.3 Detector -- 10.3.4 Microscope -- 10.3.5 Portable Spectrometers -- 10.4 Forensic Applications -- 10.4.1 Questioned Document -- 10.4.2 Explosives -- 10.4.3 Fibers -- 10.4.4 Paint -- 10.4.5 Fingermarks -- 10.4.6 Fire Accelerants -- 10.4.7 Gunshot Residues -- 10.4.8 Cosmetic Products -- 10.4.9 Other Types of Physical Evidence -- References -- Index -- EULA. |
title | Leading Edge Techniques in Forensic Trace Evidence Analysis More New Trace Analysis Methods |
title_auth | Leading Edge Techniques in Forensic Trace Evidence Analysis More New Trace Analysis Methods |
title_exact_search | Leading Edge Techniques in Forensic Trace Evidence Analysis More New Trace Analysis Methods |
title_exact_search_txtP | Leading Edge Techniques in Forensic Trace Evidence Analysis More New Trace Analysis Methods |
title_full | Leading Edge Techniques in Forensic Trace Evidence Analysis More New Trace Analysis Methods |
title_fullStr | Leading Edge Techniques in Forensic Trace Evidence Analysis More New Trace Analysis Methods |
title_full_unstemmed | Leading Edge Techniques in Forensic Trace Evidence Analysis More New Trace Analysis Methods |
title_short | Leading Edge Techniques in Forensic Trace Evidence Analysis |
title_sort | leading edge techniques in forensic trace evidence analysis more new trace analysis methods |
title_sub | More New Trace Analysis Methods |
work_keys_str_mv | AT blackledgerobertd leadingedgetechniquesinforensictraceevidenceanalysismorenewtraceanalysismethods |