Statistics for astrophysics: Time series analysis
This book is the result of the 2019 session of the School of Statistics for Astrophysics (Stat4Astro) that took place on October, 6 to 11, 2019, at Autrans near Grenoble, in France. The topic of this fourth session was the time series that, from celestial mechanics to gravitational waves, from exopl...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Les Ulis
EDP Sciences
[2022]
|
Schriftenreihe: | EDP Sciences Proceedings
|
Schlagworte: | |
Online-Zugang: | DE-1046 DE-1043 DE-858 DE-859 DE-860 DE-739 URL des Erstveröffentlichers |
Zusammenfassung: | This book is the result of the 2019 session of the School of Statistics for Astrophysics (Stat4Astro) that took place on October, 6 to 11, 2019, at Autrans near Grenoble, in France. The topic of this fourth session was the time series that, from celestial mechanics to gravitational waves, from exoplanets to quasars, concern nearly all the astrophysics. Variable phenomena are ubiquitous in the Universe: periodic (orbits, cycles, pulses, rotations.), transient (explosions, bursts, stellar activity.),random (accretion, ejection.) or regular (apparent motions.). The detection, the characterization and the classification of these variabilities is a discipline of statistics called time series analysis.Time series analysis is not new in astrophysics, but has been the subject of major developments in many other disciplines (meteorology, finance, economy, medical sciences.). In this book,you will find lectures from two statisticians who are experts in this field.Gérard Grégoire, who has a long experience in econometrics and made a huge contribution to both this book and the session. He covers the basic elements of classical L2 time series, in the time domain as well as in the frequency domain, for univariate and multivariate series, and provides also tools for statistical inference. He gives an extensive presentation of ARMA and ARIMA series, and addresses some related advanced topics. He also devotes a chapter to linear Gaussian state space models and Kalman filtering that will be helpful to follow the last chapter written by Éric Moulines and collaborators: this final chapter is dedicated to state space models in a general framework and sequential MonteCarlo methods to leverage recursions generalizing the Kalman recursions for filtering and smoothing. Many practical exercises are given using the R environment |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 04. Okt 2022) |
Beschreibung: | 1 Online-Ressource (258 Seiten) |
ISBN: | 9782759827411 |
DOI: | 10.1051/978-2-7598-2741-1 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048517569 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 221018s2022 xx o|||| 00||| eng d | ||
020 | |a 9782759827411 |9 978-2-7598-2741-1 | ||
024 | 7 | |a 10.1051/978-2-7598-2741-1 |2 doi | |
035 | |a (ZDB-23-DGG)9782759827411 | ||
035 | |a (OCoLC)1349534724 | ||
035 | |a (DE-599)BVBBV048517569 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-859 |a DE-860 |a DE-739 | ||
100 | 1 | |a Fraix‐Burnet, Didier |e Verfasser |4 aut | |
245 | 1 | 0 | |a Statistics for astrophysics |b Time series analysis |c Didier Fraix‐Burnet, Gérard Grégoire |
264 | 1 | |a Les Ulis |b EDP Sciences |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (258 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a EDP Sciences Proceedings | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 04. Okt 2022) | ||
520 | |a This book is the result of the 2019 session of the School of Statistics for Astrophysics (Stat4Astro) that took place on October, 6 to 11, 2019, at Autrans near Grenoble, in France. The topic of this fourth session was the time series that, from celestial mechanics to gravitational waves, from exoplanets to quasars, concern nearly all the astrophysics. Variable phenomena are ubiquitous in the Universe: periodic (orbits, cycles, pulses, rotations.), transient (explosions, bursts, stellar activity.),random (accretion, ejection.) or regular (apparent motions.). The detection, the characterization and the classification of these variabilities is a discipline of statistics called time series analysis.Time series analysis is not new in astrophysics, but has been the subject of major developments in many other disciplines (meteorology, finance, economy, medical sciences.). In this book,you will find lectures from two statisticians who are experts in this field.Gérard Grégoire, who has a long experience in econometrics and made a huge contribution to both this book and the session. He covers the basic elements of classical L2 time series, in the time domain as well as in the frequency domain, for univariate and multivariate series, and provides also tools for statistical inference. He gives an extensive presentation of ARMA and ARIMA series, and addresses some related advanced topics. He also devotes a chapter to linear Gaussian state space models and Kalman filtering that will be helpful to follow the last chapter written by Éric Moulines and collaborators: this final chapter is dedicated to state space models in a general framework and sequential MonteCarlo methods to leverage recursions generalizing the Kalman recursions for filtering and smoothing. Many practical exercises are given using the R environment | ||
546 | |a In English | ||
650 | 4 | |a Earth Sciences | |
650 | 7 | |a SCIENCE / Physics / Astrophysics |2 bisacsh | |
700 | 1 | |a Douc, Randal |e Sonstige |4 oth | |
700 | 1 | |a Grégoire, Gérard |e Sonstige |4 oth | |
700 | 1 | |a Grégoire, Gérard |e Sonstige |4 oth | |
700 | 1 | |a Moulines, Éric |e Sonstige |4 oth | |
700 | 1 | |a Stoffer, David |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1051/978-2-7598-2741-1 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033894506 | |
966 | e | |u https://doi.org/10.1051/978-2-7598-2741-1 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-2741-1 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-2741-1 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-2741-1 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-2741-1 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1051/978-2-7598-2741-1 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1824508129054818304 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Fraix‐Burnet, Didier |
author_facet | Fraix‐Burnet, Didier |
author_role | aut |
author_sort | Fraix‐Burnet, Didier |
author_variant | d f df |
building | Verbundindex |
bvnumber | BV048517569 |
collection | ZDB-23-DGG |
ctrlnum | (ZDB-23-DGG)9782759827411 (OCoLC)1349534724 (DE-599)BVBBV048517569 |
doi_str_mv | 10.1051/978-2-7598-2741-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV048517569</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">221018s2022 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9782759827411</subfield><subfield code="9">978-2-7598-2741-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1051/978-2-7598-2741-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9782759827411</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1349534724</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048517569</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fraix‐Burnet, Didier</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Statistics for astrophysics</subfield><subfield code="b">Time series analysis</subfield><subfield code="c">Didier Fraix‐Burnet, Gérard Grégoire</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Les Ulis</subfield><subfield code="b">EDP Sciences</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (258 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">EDP Sciences Proceedings</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 04. Okt 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book is the result of the 2019 session of the School of Statistics for Astrophysics (Stat4Astro) that took place on October, 6 to 11, 2019, at Autrans near Grenoble, in France. The topic of this fourth session was the time series that, from celestial mechanics to gravitational waves, from exoplanets to quasars, concern nearly all the astrophysics. Variable phenomena are ubiquitous in the Universe: periodic (orbits, cycles, pulses, rotations.), transient (explosions, bursts, stellar activity.),random (accretion, ejection.) or regular (apparent motions.). The detection, the characterization and the classification of these variabilities is a discipline of statistics called time series analysis.Time series analysis is not new in astrophysics, but has been the subject of major developments in many other disciplines (meteorology, finance, economy, medical sciences.). In this book,you will find lectures from two statisticians who are experts in this field.Gérard Grégoire, who has a long experience in econometrics and made a huge contribution to both this book and the session. He covers the basic elements of classical L2 time series, in the time domain as well as in the frequency domain, for univariate and multivariate series, and provides also tools for statistical inference. He gives an extensive presentation of ARMA and ARIMA series, and addresses some related advanced topics. He also devotes a chapter to linear Gaussian state space models and Kalman filtering that will be helpful to follow the last chapter written by Éric Moulines and collaborators: this final chapter is dedicated to state space models in a general framework and sequential MonteCarlo methods to leverage recursions generalizing the Kalman recursions for filtering and smoothing. Many practical exercises are given using the R environment</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Earth Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / Astrophysics</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Douc, Randal</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grégoire, Gérard</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Grégoire, Gérard</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Moulines, Éric</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Stoffer, David</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1051/978-2-7598-2741-1</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033894506</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-2741-1</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-2741-1</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-2741-1</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-2741-1</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-2741-1</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1051/978-2-7598-2741-1</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048517569 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:48:59Z |
indexdate | 2025-02-19T17:35:42Z |
institution | BVB |
isbn | 9782759827411 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033894506 |
oclc_num | 1349534724 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 |
owner_facet | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 |
physical | 1 Online-Ressource (258 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | EDP Sciences |
record_format | marc |
series2 | EDP Sciences Proceedings |
spelling | Fraix‐Burnet, Didier Verfasser aut Statistics for astrophysics Time series analysis Didier Fraix‐Burnet, Gérard Grégoire Les Ulis EDP Sciences [2022] © 2022 1 Online-Ressource (258 Seiten) txt rdacontent c rdamedia cr rdacarrier EDP Sciences Proceedings Description based on online resource; title from PDF title page (publisher's Web site, viewed 04. Okt 2022) This book is the result of the 2019 session of the School of Statistics for Astrophysics (Stat4Astro) that took place on October, 6 to 11, 2019, at Autrans near Grenoble, in France. The topic of this fourth session was the time series that, from celestial mechanics to gravitational waves, from exoplanets to quasars, concern nearly all the astrophysics. Variable phenomena are ubiquitous in the Universe: periodic (orbits, cycles, pulses, rotations.), transient (explosions, bursts, stellar activity.),random (accretion, ejection.) or regular (apparent motions.). The detection, the characterization and the classification of these variabilities is a discipline of statistics called time series analysis.Time series analysis is not new in astrophysics, but has been the subject of major developments in many other disciplines (meteorology, finance, economy, medical sciences.). In this book,you will find lectures from two statisticians who are experts in this field.Gérard Grégoire, who has a long experience in econometrics and made a huge contribution to both this book and the session. He covers the basic elements of classical L2 time series, in the time domain as well as in the frequency domain, for univariate and multivariate series, and provides also tools for statistical inference. He gives an extensive presentation of ARMA and ARIMA series, and addresses some related advanced topics. He also devotes a chapter to linear Gaussian state space models and Kalman filtering that will be helpful to follow the last chapter written by Éric Moulines and collaborators: this final chapter is dedicated to state space models in a general framework and sequential MonteCarlo methods to leverage recursions generalizing the Kalman recursions for filtering and smoothing. Many practical exercises are given using the R environment In English Earth Sciences SCIENCE / Physics / Astrophysics bisacsh Douc, Randal Sonstige oth Grégoire, Gérard Sonstige oth Moulines, Éric Sonstige oth Stoffer, David Sonstige oth https://doi.org/10.1051/978-2-7598-2741-1 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Fraix‐Burnet, Didier Statistics for astrophysics Time series analysis Earth Sciences SCIENCE / Physics / Astrophysics bisacsh |
title | Statistics for astrophysics Time series analysis |
title_auth | Statistics for astrophysics Time series analysis |
title_exact_search | Statistics for astrophysics Time series analysis |
title_exact_search_txtP | Statistics for astrophysics Time series analysis |
title_full | Statistics for astrophysics Time series analysis Didier Fraix‐Burnet, Gérard Grégoire |
title_fullStr | Statistics for astrophysics Time series analysis Didier Fraix‐Burnet, Gérard Grégoire |
title_full_unstemmed | Statistics for astrophysics Time series analysis Didier Fraix‐Burnet, Gérard Grégoire |
title_short | Statistics for astrophysics |
title_sort | statistics for astrophysics time series analysis |
title_sub | Time series analysis |
topic | Earth Sciences SCIENCE / Physics / Astrophysics bisacsh |
topic_facet | Earth Sciences SCIENCE / Physics / Astrophysics |
url | https://doi.org/10.1051/978-2-7598-2741-1 |
work_keys_str_mv | AT fraixburnetdidier statisticsforastrophysicstimeseriesanalysis AT doucrandal statisticsforastrophysicstimeseriesanalysis AT gregoiregerard statisticsforastrophysicstimeseriesanalysis AT moulineseric statisticsforastrophysicstimeseriesanalysis AT stofferdavid statisticsforastrophysicstimeseriesanalysis |