Noncommutative geometry: a functorial approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2022]
|
Ausgabe: | 2nd edition |
Schriftenreihe: | De Gruyter Studies in Mathematics
Volume 66 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | Foreword to the second edition: "...contains two new chapters on the Arithmetic Topology and Quantum Arithmetic. All other parts remain intact." |
Beschreibung: | XIX, 378 Seiten Illustrationen 24 cm x 17 cm, 793 g |
ISBN: | 9783110788600 3110788608 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV048498226 | ||
003 | DE-604 | ||
005 | 20230801 | ||
007 | t | ||
008 | 221005s2022 gw a||| |||| 00||| eng d | ||
015 | |a 22,N12 |2 dnb | ||
016 | 7 | |a 1253738122 |2 DE-101 | |
020 | |a 9783110788600 |c hardcover |9 978-3-11-078860-0 | ||
020 | |a 3110788608 |c hardcover |9 3-11-078860-8 | ||
024 | 3 | |a 9783110788600 | |
035 | |a (OCoLC)1347218495 | ||
035 | |a (DE-599)DNB1253738122 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BE | ||
049 | |a DE-29T |a DE-11 |a DE-83 | ||
084 | |a SK 240 |0 (DE-625)143226: |2 rvk | ||
084 | |a 16S38 |2 msc | ||
084 | |a 14A22 |2 msc | ||
084 | |8 1\p |a 510 |2 23sdnb | ||
084 | |a 18F99 |2 msc | ||
100 | 1 | |a Nikolaev, Igor |d 1961- |0 (DE-588)12105358X |4 aut | |
245 | 1 | 0 | |a Noncommutative geometry |b a functorial approach |c Igor V. Nikolaev |
250 | |a 2nd edition | ||
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a XIX, 378 Seiten |b Illustrationen |c 24 cm x 17 cm, 793 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a De Gruyter Studies in Mathematics |v Volume 66 | |
500 | |a Foreword to the second edition: "...contains two new chapters on the Arithmetic Topology and Quantum Arithmetic. All other parts remain intact." | ||
650 | 0 | 7 | |a Nichtkommutative Geometrie |0 (DE-588)4171742-9 |2 gnd |9 rswk-swf |
653 | |a Nichtkommutative Geometrie | ||
653 | |a Algebraische Geometrie | ||
653 | |a Funktor | ||
653 | |a Indextheorie | ||
653 | |a Zahlentheorie | ||
653 | |a Algebraic geometry, number theory, continuous geometries, topology, noncommutative algebraic geometry, quantum Arithmetic. | ||
689 | 0 | 0 | |a Nichtkommutative Geometrie |0 (DE-588)4171742-9 |D s |
689 | 0 | |5 DE-604 | |
710 | 2 | |a Walter de Gruyter GmbH & Co. KG |0 (DE-588)10095502-2 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-11-078881-5 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-11-078870-9 |
830 | 0 | |a De Gruyter Studies in Mathematics |v Volume 66 |w (DE-604)BV000005407 |9 66 | |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1253738122/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033875562&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033875562 | ||
883 | 1 | |8 1\p |a vlb |d 20220319 |q DE-101 |u https://d-nb.info/provenance/plan#vlb |
Datensatz im Suchindex
_version_ | 1804184465106272256 |
---|---|
adam_text | CONTENTS
FOREWORD
-
VII
FOREWORD
TO
THE
SECOND
EDITION
-
IX
INTRODUCTION
----
XI
PART
I:
BASICS
1
1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.3
1.4
1.4.1
1.4.2
1.5
1.5.1
1.5.2
1.5.3
1.5.4
1.5.5
MODEL
EXAMPLES
-
3
NONCOMMUTATIVE
TORI
---
3
GEOMETRIC
DEFINITION
----
3
ANALYTIC
DEFINITION
----
4
ALGEBRAIC
DEFINITION
----
5
ABSTRACT
NONCOMMUTATIVE
TORUS
----
5
FIRST
PROPERTIES
OF
THE
AG
----
6
ELLIPTIC
CURVES
----
7
WEIERSTRASS
AND
JACOBI
NORMAL
FORMS
----
7
COMPLEX
TORI
----
8
WEIERSTRASS
UNIFORMIZATION
----
9
COMPLEX
MULTIPLICATION
----
10
FUNCTOR
&
-
A
E
----
10
RANKS
OF
ELLIPTIC
CURVES
----
13
SYMMETRY
OF
COMPLEX
AND
REAL
MULTIPLICATION
----
14
ARITHMETIC
COMPLEXITY
OF
THE
ARM
----
14
CLASSIFICATION
OF
SURFACE
AUTOMORPHISMS
----
15
ANOSOV
AUTOMORPHISMS
----
16
FUNCTOR
F
----
16
HANDELMAN
S
INVARIANT
----
17
MODULE
DETERMINANT
----
18
NUMERICAL
EXAMPLES
----
18
2
2.1
2.2
2.3
CATEGORIES
AND
FUNCTORS
-
23
CATEGORIES
----
23
FUNCTORS
----
26
NATURAL
TRANSFORMATIONS
----
28
XIV
-
CONTENTS
3
3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.5
3.5.1
3.5.2
3.6
3.7
C*-ALGEBRAS
-
31
BASIC
DEFINITIONS
----
31
CROSSED
PRODUCTS
----
33
K-THEORY
OFTHE
C*-ALGEBRAS
----
35
NONCOMMUTATIVE
TORI
----
39
N-DIMENSIONAL
NONCOMMUTATIVE
TORI
----
39
2-DIMENSIONAL
NONCOMMUTATIVE
TORI
----
41
AF-ALGEBRAS
----
43
GENERIC
AF-ALGEBRAS
----
43
STATIONARY
AF-ALGEBRAS
----
46
UHF-ALGEBRAS
----
47
CUNTZ-KRIEGER
ALGEBRAS
----
49
PART
II:
NONCOMMUTATIVE
INVARIANTS
4
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
TOPOLOGY
----
55
CLASSIFICATION
OFTHE
SURFACE
AUTOMORPHISMS
----
55
PSEUDO-ANOSOV
AUTOMORPHISMS
OF
A
SURFACE
----
55
FUNCTORS
AND
INVARIANTS
----
57
JACOBIAN
OF
MEASURED
FOLIATIONS
----
59
EQUIVALENT
FOLIATIONS
----
61
PROOFS
----
62
ANOSOV
MAPS
OFTHE
TORUS
----
67
TORSION
IN
THE
TORUS
BUNDLES
----
70
CUNTZ-KRIEGER
FUNCTOR
----
70
PROOF
OF
THEOREM
4.2.1
----
71
NONCOMMUTATIVE
INVARIANTS
OF
TORUS
BUNDLES
----
73
OBSTRUCTION
THEORY
FOR
ANOSOV
S
BUNDLES
----
75
FUNDAMENTAL
AF-ALGEBRA
----
75
PROOFS
----
78
OBSTRUCTION
THEORY
----
83
CLUSTER
C*-ALGEBRAS
AND
KNOT
POLYNOMIALS
-----86
INVARIANT
LAURENT
POLYNOMIALS
-----86
BIRMAN-HILDEN
THEOREM
----
88
CLUSTER
C*
-ALGEBRAS
-----89
JONES
AND
HOMFLY
POLYNOMIALS
----
91
PROOF
OF
THEOREM
4.4.1
----
92
EXAMPLES
----
97
5
5.1
ALGEBRAIC
GEOMETRY
-
103
ELLIPTIC
CURVES
----
103
CONTENTS
-
-
XV
5.1.1
NONCOMMUTATIVE
TORI
VIA
SKLYANIN
ALGEBRAS
----
104
5.1.2
NONCOMMUTATIVE
TORI
VIA
MEASURED
FOLIATIONS
----
109
5.2
ALGEBRAIC
CURVES
OF
GENUS
G
1
-----
114
5.2.1
TORIC
AF-ALGEBRAS
----
115
5.2.2
PROOF
OF
THEOREM
5.2.1
----
116
5.3
PROJECTIVE
VARIETIES
OF
DIMENSION
N
1
----
120
5.3.1
SERRE
C*-ALGEBRAS
----
121
5.3.2
PROOF
OF
THEOREM
5.3.4
----
124
5.3.3
EXAMPLE
----
127
5.4
TATE
CURVES
AND
UHF-ALGEBRAS
----
129
5.4.1
ELLIPTIC
CURVE
OVER
P-ADIC
NUMBERS
----
129
5.4.2
PROOF
OF
THEOREM
5.4.1
-----
130
5.4.3
EXAMPLE
-----
134
5.5
MAPPING
CLASS
GROUP
----
135
5.5.1
HARVEY
S
CONJECTURE
----
135
5.5.2
PROOF
OF
THEOREM
5.5.1
-----
136
6
NUMBER
THEORY
-----
143
6.1
ISOGENIES
OF
ELLIPTIC
CURVES
----
143
6.1.1
SYMMETRY
OF
COMPLEX
AND
REAL
MULTIPLICATION
----
144
6.1.2
PROOF
OF
THEOREM
6.1.1
-----
145
6.1.3
PROOF
OF
THEOREM
6.1.2
-----
148
6.1.4
PROOF
OF
THEOREM
6.1.3
-----
150
6.2
RANKS
OF
ELLIPTIC
CURVES
-----
155
6.2.1
ARITHMETIC
COMPLEXITY
OF
ARM
----
155
6.2.2
MORDELL
AF-ALGEBRA
-----
156
6.2.3
PROOF
OF
THEOREM
6.2.1
-----
157
6.2.4
NUMERICAL
EXAMPLES
-----
161
6.3
TRANSCENDENTAL
NUMBER
THEORY
----
162
6.3.1
ALGEBRAIC
VALUES
OF
Y(0,)
=
E2ME+LOGLOGE
-
-
-
-
162
6.3.2
PROOF
OF
THEOREM
6.3.1
-----
163
6.3.3
COMMENTS
ON
A
NOTE
BY
M.
WALDSCHMIDT
----
165
6.4
CLASS
FIELD
THEORY
----
167
6.4.1
HILBERT
CLASS
FIELD
OF
A
REAL
QUADRATIC
FIELD
----
167
6.4.2
AF-ALGEBRA
OFTHE
HECKE
EIGENFORM
-----
169
6.4.3
PROOF
OF
THEOREM
6.4.1
-----
170
6.4.4
EXAMPLES
-----
173
6.5
NONCOMMUTATIVE
RECIPROCITY
-----
175
6.5.1
/.-FUNCTION
OF
NONCOMMUTATIVE
TORI
-----
175
6.5.2
PROOF
OF
THEOREM
6.5.1
-----
176
6.5.3
SUPPLEMENT:
GRBSSENCHARACTERS,
UNITS,
AND
N(N)
-----
182
6.6
LANGLANDS
CONJECTURE
FOR
AZM
-----
185
XVI
-----
CONTENTS
6.6.1
6.6.2
6.6.3
6.7
6.7.1
6.7.2
6.7.3
L(ARM,S)
-----
185
PROOF
OF
THEOREM
6.6.1
----
189
SUPPLEMENT:
ARTIN
/.-FUNCTION
----
191
PROJECTIVE
VARIETIES
OVER
FINITE
FIELDS
----
193
TRACES
OF
FROBENIUS
ENDOMORPHISMS
----
193
PROOF
OF
THEOREM
6.7.1
----
195
EXAMPLES
----
200
7
7.1
7.1.1
7.1.2
7.1.3
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.3
7.3.1
7.3.2
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.5
7.5.1
7.5.2
7.5.3
ARITHMETIC
TOPOLOGY
----
207
ARITHMETIC
TOPOLOGY
OF
3-MANIFOLDS
----
207
BRAIDS,
LINKS,
AND
GALOIS
COVERING
----
209
PROOF
OF
THEOREM
7.1.1
----
210
PUNCTURED
TORUS
----
213
ARITHMETIC
TOPOLOGY
OF
4-MANIFOLDS
----
215
4-DIMENSIONAL
MANIFOLDS
----
216
GALOIS
THEORY
FOR
NONCOMMUTATIVE
FIELDS
----
217
UCHIDA
MAP
----
218
PROOFS
----
219
ROKHLIN
AND
DONALDSON
S
THEOREMS
REVISITED
----
222
UNTYING
KNOTS
IN
4D
AND
WEDDERBURN
S
THEOREM
----
225
WEDDERBURN
S
THEOREM
----
225
PROOF
OF
THEOREM
7.3.1
----
226
DYNAMICAL
IDEALS
OF
NONCOMMUTATIVE
RINGS
----
227
TOPOLOGICAL
DYNAMICS
-
230
CYCLIC
DIVISION
ALGEBRAS
----
230
PIERGALLINI
COVERING
----
231
PROOF
OF
THEOREM
7.4.1
----
232
KNOTTED
SURFACES
IN
4-MANIFOLDS
----
234
ETESI
C*
-ALGEBRAS
----
238
MINKOWSKI
GROUP
----
239
GOMPF
S
THEOREM
----
240
PROOFS
----
241
8
8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.2
8.2.1
8.2.2
QUANTUM
ARITHMETIC
----
249
LANGLANDS
RECIPROCITY
FOR
C*-ALGEBRAS
----
249
TRACE
COHOMOLOGY
----
250
LANGLANDS
RECIPROCITY
----
251
PROOFS
----
252
PIMSNER-VOICULESCU
EMBEDDING
----
257
K-THEORY
OF
RATIONAL
QUADRATIC
FORMS
----
259
ALGEBRAIC
GROUPS
OVER
ADELES
----
260
PROOFS
----
261
CONTENTS
XVII
8.2.3
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.6
8.6.1
8.6.2
BINARY
QUADRATIC
FORMS
----
264
QUANTUM
DYNAMICS
OF
ELLIPTIC
CURVES
----
265
C*-DYNAMICAL
SYSTEMS
----
267
ABELIAN
EXTENSIONS
OF
QUADRATIC
FIELDS
----
267
SHAFAREVICH-TATE
GROUP
OF
ELLIPTIC
CURVES
----
268
PROOFS
----
268
SHAFAREVICH-TATE
GROUPS
OF
ABELIAN
VARIETIES
----
275
ABELIAN
VARIETIES
----
276
WEIL-CHATELET
GROUP
----
277
LOCALIZATION
FORMULAS
----
278
PROOF
OF
THEOREM
8.4.1
----
279
ABELIAN
VARIETIES
WITH
COMPLEX
MULTIPLICATION
----
283
NONCOMMUTATIVE
GEOMETRY
OF
ELLIPTIC
SURFACES
----
285
BROCK-ELKIES-JORDAN
VARIETY
----
286
ELLIPTIC
SURFACES
----
288
PROOFS
----
288
PICARD
NUMBERS
----
294
CLASS
FIELD
TOWERS
AND
MINIMAL
MODELS
----
295
ALGEBRAIC
SURFACES
----
297
PROOFS
----
297
PART
III:
BRIEF
SURVEY
OF
NCG
9
9.1
9.2
9.3
FINITE
GEOMETRIES
----
305
AXIOMS
OF
PROJECTIVE
GEOMETRY
----
305
PROJECTIVE
SPACES
OVER
SKEW
FIELDS
----
306
DESARGUES
AND
PAPPUS
AXIOMS
----
307
10
10.1
10.2
CONTINUOUS
GEOMETRIES
----
309
W*
-ALGEBRAS
----
309
VON
NEUMANN
GEOMETRY
----
311
11
11.1
11.1.1
11.1.2
11.2
11.2.1
11.2.2
11.2.3
11.3
CONNES
GEOMETRIES
----
313
CLASSIFICATION
OF
TYPE
III
FACTORS
----
313
TOMITA-TAKESAKI
THEORY
----
313
CONNES
INVARIANTS
----
314
NONCOMMUTATIVE
DIFFERENTIAL GEOMETRY
----
315
HOCHSCHILD
HOMOLOGY
----
315
CYCLIC
HOMOLOGY
----
316
NOVIKOV
CONJECTURE
FOR
HYPERBOLIC
GROUPS
----
317
CONNES
INDEX
THEOREM
----
318
XVIII
-
CONTENTS
11.3.1
11.3.2
11.3.3
11.4
11.4.1
11.4.2
ATIYAH-SINGER
THEOREM
FOR
FAMILIES
OF
ELLIPTIC
OPERATORS
----
318
FOLIATED
SPACES
----
319
INDEX
THEOREM
FOR
FOLIATED
SPACES
----
320
BOST-CONNES
DYNAMICAL
SYSTEM
----
321
HECKE
C*-ALGEBRA
----
321
BOST-CONNES
THEOREM
----
322
12
12.1
12.1.1
12.1.2
12.1.3
12.2
12.2.1
12.2.2
12.2.3
12.3
12.3.1
12.3.2
12.4
12.4.1
12.4.2
12.4.3
12.5
INDEX
THEORY
----
325
ATIYAH-SINGER
THEOREM
----
325
FREDHOLM
OPERATORS
----
325
ELLIPTIC
OPERATORS
ON
MANIFOLDS
----
326
INDEX
THEOREM
----
327
K-HOMOLOGY
----
328
TOPOLOGICAL
K-THEORY
----
328
ATIAYH
S
REALIZATION
OF
K-HOMOLOGY
----
330
BROWN-DOUGLAS-FILLMORE
THEORY
----
331
KASPAROV
S
KK-THEORY
----
332
HILBERT
MODULES
----
333
KK-GROUPS
----
334
APPLICATIONS
OF
INDEX
THEORY
----
335
NOVIKOV
CONJECTURE
----
335
BAUM-CONNES
CONJECTURE
----
337
POSITIVE
SCALAR
CURVATURE
----
337
COARSE
GEOMETRY
----
338
13
13.1
13.2
13.3
JONES
POLYNOMIALS
-
341
SUBFACTORS
----
341
BRAIDS
----
342
TRACE
INVARIANT
----
344
14
14.1
14.2
14.3
QUANTUM
GROUPS----
347
MANIN
S
QUANTUM
PLANE
----
348
HOPF
ALGEBRAS
----
349
OPERATOR
ALGEBRAS
AND
QUANTUM
GROUPS
----
350
15
15.1
15.2
15.3
NONCOMMUTATIVE
ALGEBRAIC
GEOMETRY
-
353
SERRE
ISOMORPHISM
----
353
TWISTED
HOMOGENEOUS
COORDINATE
RINGS
----
355
SKLYANIN
ALGEBRAS
----
356
16
16.1
TRENDS
IN
NONCOMMUTATIVE
GEOMETRY
-
359
DERIVED
CATEGORIES
----
359
CONTENTS
-
-
XIX
16.2
NONCOMMUTATIVE
THICKENING
-----
360
16.3
DEFORMATION
QUANTIZATION
OF
POISSON
MANIFOLDS
-----
361
16.4
ALGEBRAIC
GEOMETRY
OF
NONCOMMUTATIVE
RINGS
----
362
BIBLIOGRAPHY
----
365
INDEX
----
375
|
adam_txt |
CONTENTS
FOREWORD
-
VII
FOREWORD
TO
THE
SECOND
EDITION
-
IX
INTRODUCTION
----
XI
PART
I:
BASICS
1
1.1
1.1.1
1.1.2
1.1.3
1.1.4
1.1.5
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.3
1.4
1.4.1
1.4.2
1.5
1.5.1
1.5.2
1.5.3
1.5.4
1.5.5
MODEL
EXAMPLES
-
3
NONCOMMUTATIVE
TORI
---
3
GEOMETRIC
DEFINITION
----
3
ANALYTIC
DEFINITION
----
4
ALGEBRAIC
DEFINITION
----
5
ABSTRACT
NONCOMMUTATIVE
TORUS
----
5
FIRST
PROPERTIES
OF
THE
AG
----
6
ELLIPTIC
CURVES
----
7
WEIERSTRASS
AND
JACOBI
NORMAL
FORMS
----
7
COMPLEX
TORI
----
8
WEIERSTRASS
UNIFORMIZATION
----
9
COMPLEX
MULTIPLICATION
----
10
FUNCTOR
&
-
A
E
----
10
RANKS
OF
ELLIPTIC
CURVES
----
13
SYMMETRY
OF
COMPLEX
AND
REAL
MULTIPLICATION
----
14
ARITHMETIC
COMPLEXITY
OF
THE
ARM
----
14
CLASSIFICATION
OF
SURFACE
AUTOMORPHISMS
----
15
ANOSOV
AUTOMORPHISMS
----
16
FUNCTOR
F
----
16
HANDELMAN
'
S
INVARIANT
----
17
MODULE
DETERMINANT
----
18
NUMERICAL
EXAMPLES
----
18
2
2.1
2.2
2.3
CATEGORIES
AND
FUNCTORS
-
23
CATEGORIES
----
23
FUNCTORS
----
26
NATURAL
TRANSFORMATIONS
----
28
XIV
-
CONTENTS
3
3.1
3.2
3.3
3.4
3.4.1
3.4.2
3.5
3.5.1
3.5.2
3.6
3.7
C*-ALGEBRAS
-
31
BASIC
DEFINITIONS
----
31
CROSSED
PRODUCTS
----
33
K-THEORY
OFTHE
C*-ALGEBRAS
----
35
NONCOMMUTATIVE
TORI
----
39
N-DIMENSIONAL
NONCOMMUTATIVE
TORI
----
39
2-DIMENSIONAL
NONCOMMUTATIVE
TORI
----
41
AF-ALGEBRAS
----
43
GENERIC
AF-ALGEBRAS
----
43
STATIONARY
AF-ALGEBRAS
----
46
UHF-ALGEBRAS
----
47
CUNTZ-KRIEGER
ALGEBRAS
----
49
PART
II:
NONCOMMUTATIVE
INVARIANTS
4
4.1
4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6
4.2
4.2.1
4.2.2
4.2.3
4.3
4.3.1
4.3.2
4.3.3
4.4
4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
TOPOLOGY
----
55
CLASSIFICATION
OFTHE
SURFACE
AUTOMORPHISMS
----
55
PSEUDO-ANOSOV
AUTOMORPHISMS
OF
A
SURFACE
----
55
FUNCTORS
AND
INVARIANTS
----
57
JACOBIAN
OF
MEASURED
FOLIATIONS
----
59
EQUIVALENT
FOLIATIONS
----
61
PROOFS
----
62
ANOSOV
MAPS
OFTHE
TORUS
----
67
TORSION
IN
THE
TORUS
BUNDLES
----
70
CUNTZ-KRIEGER
FUNCTOR
----
70
PROOF
OF
THEOREM
4.2.1
----
71
NONCOMMUTATIVE
INVARIANTS
OF
TORUS
BUNDLES
----
73
OBSTRUCTION
THEORY
FOR
ANOSOV
'
S
BUNDLES
----
75
FUNDAMENTAL
AF-ALGEBRA
----
75
PROOFS
----
78
OBSTRUCTION
THEORY
----
83
CLUSTER
C*-ALGEBRAS
AND
KNOT
POLYNOMIALS
-----86
INVARIANT
LAURENT
POLYNOMIALS
-----86
BIRMAN-HILDEN
THEOREM
----
88
CLUSTER
C*
-ALGEBRAS
-----89
JONES
AND
HOMFLY
POLYNOMIALS
----
91
PROOF
OF
THEOREM
4.4.1
----
92
EXAMPLES
----
97
5
5.1
ALGEBRAIC
GEOMETRY
-
103
ELLIPTIC
CURVES
----
103
CONTENTS
-
-
XV
5.1.1
NONCOMMUTATIVE
TORI
VIA
SKLYANIN
ALGEBRAS
----
104
5.1.2
NONCOMMUTATIVE
TORI
VIA
MEASURED
FOLIATIONS
----
109
5.2
ALGEBRAIC
CURVES
OF
GENUS
G
1
-----
114
5.2.1
TORIC
AF-ALGEBRAS
----
115
5.2.2
PROOF
OF
THEOREM
5.2.1
----
116
5.3
PROJECTIVE
VARIETIES
OF
DIMENSION
N
1
----
120
5.3.1
SERRE
C*-ALGEBRAS
----
121
5.3.2
PROOF
OF
THEOREM
5.3.4
----
124
5.3.3
EXAMPLE
----
127
5.4
TATE
CURVES
AND
UHF-ALGEBRAS
----
129
5.4.1
ELLIPTIC
CURVE
OVER
P-ADIC
NUMBERS
----
129
5.4.2
PROOF
OF
THEOREM
5.4.1
-----
130
5.4.3
EXAMPLE
-----
134
5.5
MAPPING
CLASS
GROUP
----
135
5.5.1
HARVEY
'
S
CONJECTURE
----
135
5.5.2
PROOF
OF
THEOREM
5.5.1
-----
136
6
NUMBER
THEORY
-----
143
6.1
ISOGENIES
OF
ELLIPTIC
CURVES
----
143
6.1.1
SYMMETRY
OF
COMPLEX
AND
REAL
MULTIPLICATION
----
144
6.1.2
PROOF
OF
THEOREM
6.1.1
-----
145
6.1.3
PROOF
OF
THEOREM
6.1.2
-----
148
6.1.4
PROOF
OF
THEOREM
6.1.3
-----
150
6.2
RANKS
OF
ELLIPTIC
CURVES
-----
155
6.2.1
ARITHMETIC
COMPLEXITY
OF
ARM
----
155
6.2.2
MORDELL
AF-ALGEBRA
-----
156
6.2.3
PROOF
OF
THEOREM
6.2.1
-----
157
6.2.4
NUMERICAL
EXAMPLES
-----
161
6.3
TRANSCENDENTAL
NUMBER
THEORY
----
162
6.3.1
ALGEBRAIC
VALUES
OF
Y(0,)
=
E2ME+LOGLOGE
-
-
-
-
162
6.3.2
PROOF
OF
THEOREM
6.3.1
-----
163
6.3.3
COMMENTS
ON
A
NOTE
BY
M.
WALDSCHMIDT
----
165
6.4
CLASS
FIELD
THEORY
----
167
6.4.1
HILBERT
CLASS
FIELD
OF
A
REAL
QUADRATIC
FIELD
----
167
6.4.2
AF-ALGEBRA
OFTHE
HECKE
EIGENFORM
-----
169
6.4.3
PROOF
OF
THEOREM
6.4.1
-----
170
6.4.4
EXAMPLES
-----
173
6.5
NONCOMMUTATIVE
RECIPROCITY
-----
175
6.5.1
/.-FUNCTION
OF
NONCOMMUTATIVE
TORI
-----
175
6.5.2
PROOF
OF
THEOREM
6.5.1
-----
176
6.5.3
SUPPLEMENT:
GRBSSENCHARACTERS,
UNITS,
AND
N(N)
-----
182
6.6
LANGLANDS
CONJECTURE
FOR
AZM
-----
185
XVI
-----
CONTENTS
6.6.1
6.6.2
6.6.3
6.7
6.7.1
6.7.2
6.7.3
L(ARM,S)
-----
185
PROOF
OF
THEOREM
6.6.1
----
189
SUPPLEMENT:
ARTIN
/.-FUNCTION
----
191
PROJECTIVE
VARIETIES
OVER
FINITE
FIELDS
----
193
TRACES
OF
FROBENIUS
ENDOMORPHISMS
----
193
PROOF
OF
THEOREM
6.7.1
----
195
EXAMPLES
----
200
7
7.1
7.1.1
7.1.2
7.1.3
7.2
7.2.1
7.2.2
7.2.3
7.2.4
7.2.5
7.3
7.3.1
7.3.2
7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.5
7.5.1
7.5.2
7.5.3
ARITHMETIC
TOPOLOGY
----
207
ARITHMETIC
TOPOLOGY
OF
3-MANIFOLDS
----
207
BRAIDS,
LINKS,
AND
GALOIS
COVERING
----
209
PROOF
OF
THEOREM
7.1.1
----
210
PUNCTURED
TORUS
----
213
ARITHMETIC
TOPOLOGY
OF
4-MANIFOLDS
----
215
4-DIMENSIONAL
MANIFOLDS
----
216
GALOIS
THEORY
FOR
NONCOMMUTATIVE
FIELDS
----
217
UCHIDA
MAP
----
218
PROOFS
----
219
ROKHLIN
AND
DONALDSON
'
S
THEOREMS
REVISITED
----
222
UNTYING
KNOTS
IN
4D
AND
WEDDERBURN
'
S
THEOREM
----
225
WEDDERBURN
'
S
THEOREM
----
225
PROOF
OF
THEOREM
7.3.1
----
226
DYNAMICAL
IDEALS
OF
NONCOMMUTATIVE
RINGS
----
227
TOPOLOGICAL
DYNAMICS
-
230
CYCLIC
DIVISION
ALGEBRAS
----
230
PIERGALLINI
COVERING
----
231
PROOF
OF
THEOREM
7.4.1
----
232
KNOTTED
SURFACES
IN
4-MANIFOLDS
----
234
ETESI
C*
-ALGEBRAS
----
238
MINKOWSKI
GROUP
----
239
GOMPF
'
S
THEOREM
----
240
PROOFS
----
241
8
8.1
8.1.1
8.1.2
8.1.3
8.1.4
8.2
8.2.1
8.2.2
QUANTUM
ARITHMETIC
----
249
LANGLANDS
RECIPROCITY
FOR
C*-ALGEBRAS
----
249
TRACE
COHOMOLOGY
----
250
LANGLANDS
RECIPROCITY
----
251
PROOFS
----
252
PIMSNER-VOICULESCU
EMBEDDING
----
257
K-THEORY
OF
RATIONAL
QUADRATIC
FORMS
----
259
ALGEBRAIC
GROUPS
OVER
ADELES
----
260
PROOFS
----
261
CONTENTS
XVII
8.2.3
8.3
8.3.1
8.3.2
8.3.3
8.3.4
8.4
8.4.1
8.4.2
8.4.3
8.4.4
8.4.5
8.5
8.5.1
8.5.2
8.5.3
8.5.4
8.6
8.6.1
8.6.2
BINARY
QUADRATIC
FORMS
----
264
QUANTUM
DYNAMICS
OF
ELLIPTIC
CURVES
----
265
C*-DYNAMICAL
SYSTEMS
----
267
ABELIAN
EXTENSIONS
OF
QUADRATIC
FIELDS
----
267
SHAFAREVICH-TATE
GROUP
OF
ELLIPTIC
CURVES
----
268
PROOFS
----
268
SHAFAREVICH-TATE
GROUPS
OF
ABELIAN
VARIETIES
----
275
ABELIAN
VARIETIES
----
276
WEIL-CHATELET
GROUP
----
277
LOCALIZATION
FORMULAS
----
278
PROOF
OF
THEOREM
8.4.1
----
279
ABELIAN
VARIETIES
WITH
COMPLEX
MULTIPLICATION
----
283
NONCOMMUTATIVE
GEOMETRY
OF
ELLIPTIC
SURFACES
----
285
BROCK-ELKIES-JORDAN
VARIETY
----
286
ELLIPTIC
SURFACES
----
288
PROOFS
----
288
PICARD
NUMBERS
----
294
CLASS
FIELD
TOWERS
AND
MINIMAL
MODELS
----
295
ALGEBRAIC
SURFACES
----
297
PROOFS
----
297
PART
III:
BRIEF
SURVEY
OF
NCG
9
9.1
9.2
9.3
FINITE
GEOMETRIES
----
305
AXIOMS
OF
PROJECTIVE
GEOMETRY
----
305
PROJECTIVE
SPACES
OVER
SKEW
FIELDS
----
306
DESARGUES
AND
PAPPUS
AXIOMS
----
307
10
10.1
10.2
CONTINUOUS
GEOMETRIES
----
309
W*
-ALGEBRAS
----
309
VON
NEUMANN
GEOMETRY
----
311
11
11.1
11.1.1
11.1.2
11.2
11.2.1
11.2.2
11.2.3
11.3
CONNES
GEOMETRIES
----
313
CLASSIFICATION
OF
TYPE
III
FACTORS
----
313
TOMITA-TAKESAKI
THEORY
----
313
CONNES
INVARIANTS
----
314
NONCOMMUTATIVE
DIFFERENTIAL GEOMETRY
----
315
HOCHSCHILD
HOMOLOGY
----
315
CYCLIC
HOMOLOGY
----
316
NOVIKOV
CONJECTURE
FOR
HYPERBOLIC
GROUPS
----
317
CONNES
'
INDEX
THEOREM
----
318
XVIII
-
CONTENTS
11.3.1
11.3.2
11.3.3
11.4
11.4.1
11.4.2
ATIYAH-SINGER
THEOREM
FOR
FAMILIES
OF
ELLIPTIC
OPERATORS
----
318
FOLIATED
SPACES
----
319
INDEX
THEOREM
FOR
FOLIATED
SPACES
----
320
BOST-CONNES
DYNAMICAL
SYSTEM
----
321
HECKE
C*-ALGEBRA
----
321
BOST-CONNES
THEOREM
----
322
12
12.1
12.1.1
12.1.2
12.1.3
12.2
12.2.1
12.2.2
12.2.3
12.3
12.3.1
12.3.2
12.4
12.4.1
12.4.2
12.4.3
12.5
INDEX
THEORY
----
325
ATIYAH-SINGER
THEOREM
----
325
FREDHOLM
OPERATORS
----
325
ELLIPTIC
OPERATORS
ON
MANIFOLDS
----
326
INDEX
THEOREM
----
327
K-HOMOLOGY
----
328
TOPOLOGICAL
K-THEORY
----
328
ATIAYH
'
S
REALIZATION
OF
K-HOMOLOGY
----
330
BROWN-DOUGLAS-FILLMORE
THEORY
----
331
KASPAROV
'
S
KK-THEORY
----
332
HILBERT
MODULES
----
333
KK-GROUPS
----
334
APPLICATIONS
OF
INDEX
THEORY
----
335
NOVIKOV
CONJECTURE
----
335
BAUM-CONNES
CONJECTURE
----
337
POSITIVE
SCALAR
CURVATURE
----
337
COARSE
GEOMETRY
----
338
13
13.1
13.2
13.3
JONES
POLYNOMIALS
-
341
SUBFACTORS
----
341
BRAIDS
----
342
TRACE
INVARIANT
----
344
14
14.1
14.2
14.3
QUANTUM
GROUPS----
347
MANIN
'
S
QUANTUM
PLANE
----
348
HOPF
ALGEBRAS
----
349
OPERATOR
ALGEBRAS
AND
QUANTUM
GROUPS
----
350
15
15.1
15.2
15.3
NONCOMMUTATIVE
ALGEBRAIC
GEOMETRY
-
353
SERRE
ISOMORPHISM
----
353
TWISTED
HOMOGENEOUS
COORDINATE
RINGS
----
355
SKLYANIN
ALGEBRAS
----
356
16
16.1
TRENDS
IN
NONCOMMUTATIVE
GEOMETRY
-
359
DERIVED
CATEGORIES
----
359
CONTENTS
-
-
XIX
16.2
NONCOMMUTATIVE
THICKENING
-----
360
16.3
DEFORMATION
QUANTIZATION
OF
POISSON
MANIFOLDS
-----
361
16.4
ALGEBRAIC
GEOMETRY
OF
NONCOMMUTATIVE
RINGS
----
362
BIBLIOGRAPHY
----
365
INDEX
----
375 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Nikolaev, Igor 1961- |
author_GND | (DE-588)12105358X |
author_facet | Nikolaev, Igor 1961- |
author_role | aut |
author_sort | Nikolaev, Igor 1961- |
author_variant | i n in |
building | Verbundindex |
bvnumber | BV048498226 |
classification_rvk | SK 240 |
ctrlnum | (OCoLC)1347218495 (DE-599)DNB1253738122 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | 2nd edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02605nam a2200613 cb4500</leader><controlfield tag="001">BV048498226</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230801 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">221005s2022 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,N12</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1253738122</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110788600</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-3-11-078860-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110788608</subfield><subfield code="c">hardcover</subfield><subfield code="9">3-11-078860-8</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783110788600</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1347218495</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1253738122</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 240</subfield><subfield code="0">(DE-625)143226:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16S38</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">14A22</subfield><subfield code="2">msc</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">510</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">18F99</subfield><subfield code="2">msc</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nikolaev, Igor</subfield><subfield code="d">1961-</subfield><subfield code="0">(DE-588)12105358X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Noncommutative geometry</subfield><subfield code="b">a functorial approach</subfield><subfield code="c">Igor V. Nikolaev</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">2nd edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XIX, 378 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">24 cm x 17 cm, 793 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter Studies in Mathematics</subfield><subfield code="v">Volume 66</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Foreword to the second edition: "...contains two new chapters on the Arithmetic Topology and Quantum Arithmetic. All other parts remain intact."</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtkommutative Geometrie</subfield><subfield code="0">(DE-588)4171742-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nichtkommutative Geometrie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algebraische Geometrie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Funktor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Indextheorie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Zahlentheorie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Algebraic geometry, number theory, continuous geometries, topology, noncommutative algebraic geometry, quantum Arithmetic.</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtkommutative Geometrie</subfield><subfield code="0">(DE-588)4171742-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Walter de Gruyter GmbH & Co. KG</subfield><subfield code="0">(DE-588)10095502-2</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-11-078881-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-11-078870-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter Studies in Mathematics</subfield><subfield code="v">Volume 66</subfield><subfield code="w">(DE-604)BV000005407</subfield><subfield code="9">66</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1253738122/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033875562&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033875562</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">vlb</subfield><subfield code="d">20220319</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#vlb</subfield></datafield></record></collection> |
id | DE-604.BV048498226 |
illustrated | Illustrated |
index_date | 2024-07-03T20:43:41Z |
indexdate | 2024-07-10T09:39:46Z |
institution | BVB |
institution_GND | (DE-588)10095502-2 |
isbn | 9783110788600 3110788608 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033875562 |
oclc_num | 1347218495 |
open_access_boolean | |
owner | DE-29T DE-11 DE-83 |
owner_facet | DE-29T DE-11 DE-83 |
physical | XIX, 378 Seiten Illustrationen 24 cm x 17 cm, 793 g |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter Studies in Mathematics |
series2 | De Gruyter Studies in Mathematics |
spelling | Nikolaev, Igor 1961- (DE-588)12105358X aut Noncommutative geometry a functorial approach Igor V. Nikolaev 2nd edition Berlin ; Boston De Gruyter [2022] © 2022 XIX, 378 Seiten Illustrationen 24 cm x 17 cm, 793 g txt rdacontent n rdamedia nc rdacarrier De Gruyter Studies in Mathematics Volume 66 Foreword to the second edition: "...contains two new chapters on the Arithmetic Topology and Quantum Arithmetic. All other parts remain intact." Nichtkommutative Geometrie (DE-588)4171742-9 gnd rswk-swf Nichtkommutative Geometrie Algebraische Geometrie Funktor Indextheorie Zahlentheorie Algebraic geometry, number theory, continuous geometries, topology, noncommutative algebraic geometry, quantum Arithmetic. Nichtkommutative Geometrie (DE-588)4171742-9 s DE-604 Walter de Gruyter GmbH & Co. KG (DE-588)10095502-2 pbl Erscheint auch als Online-Ausgabe, EPUB 978-3-11-078881-5 Erscheint auch als Online-Ausgabe, PDF 978-3-11-078870-9 De Gruyter Studies in Mathematics Volume 66 (DE-604)BV000005407 66 B:DE-101 application/pdf https://d-nb.info/1253738122/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033875562&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p vlb 20220319 DE-101 https://d-nb.info/provenance/plan#vlb |
spellingShingle | Nikolaev, Igor 1961- Noncommutative geometry a functorial approach De Gruyter Studies in Mathematics Nichtkommutative Geometrie (DE-588)4171742-9 gnd |
subject_GND | (DE-588)4171742-9 |
title | Noncommutative geometry a functorial approach |
title_auth | Noncommutative geometry a functorial approach |
title_exact_search | Noncommutative geometry a functorial approach |
title_exact_search_txtP | Noncommutative geometry a functorial approach |
title_full | Noncommutative geometry a functorial approach Igor V. Nikolaev |
title_fullStr | Noncommutative geometry a functorial approach Igor V. Nikolaev |
title_full_unstemmed | Noncommutative geometry a functorial approach Igor V. Nikolaev |
title_short | Noncommutative geometry |
title_sort | noncommutative geometry a functorial approach |
title_sub | a functorial approach |
topic | Nichtkommutative Geometrie (DE-588)4171742-9 gnd |
topic_facet | Nichtkommutative Geometrie |
url | https://d-nb.info/1253738122/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033875562&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV000005407 |
work_keys_str_mv | AT nikolaevigor noncommutativegeometryafunctorialapproach AT walterdegruytergmbhcokg noncommutativegeometryafunctorialapproach |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis