Cyanobacteria biotechnology:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim, Germany
Wiley-VCH
[2021]
|
Schriftenreihe: | Advanced biotechnology
volume 12 |
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34714-8/ Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | xviii, 542 Seiten Illustrationen, Diagramme |
ISBN: | 9783527347148 3527347143 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV048488850 | ||
003 | DE-604 | ||
005 | 20230123 | ||
007 | t | ||
008 | 220927s2021 gw a||| |||| 00||| eng d | ||
016 | 7 | |a 1219753068 |2 DE-101 | |
020 | |a 9783527347148 |c Festeinband |9 978-3-527-34714-8 | ||
020 | |a 3527347143 |9 3-527-34714-3 | ||
035 | |a (OCoLC)1255705675 | ||
035 | |a (DE-599)DNB1219753068 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-634 |a DE-11 | ||
082 | 0 | 4 | |a 660.62 |2 23/ger |
084 | |a WF 9745 |0 (DE-625)148465:13430 |2 rvk | ||
084 | |8 1\p |a 660 |2 23sdnb | ||
245 | 1 | 0 | |a Cyanobacteria biotechnology |c edited by Paul Hudson |
264 | 1 | |a Weinheim, Germany |b Wiley-VCH |c [2021] | |
300 | |a xviii, 542 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Advanced biotechnology |v volume 12 | |
650 | 0 | 7 | |a Bioverfahrenstechnik |0 (DE-588)4307166-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Cyanobakterien |0 (DE-588)4136726-1 |2 gnd |9 rswk-swf |
653 | |a Biochemical Engineering | ||
653 | |a Biochemische Verfahrenstechnik | ||
653 | |a Biotechnologie | ||
653 | |a Biotechnologie i. d. Biowissenschaften | ||
653 | |a Biotechnology | ||
653 | |a Biowissenschaften | ||
653 | |a Chemical Engineering | ||
653 | |a Chemische Verfahrenstechnik | ||
653 | |a Cyanobakterien | ||
653 | |a Life Sciences | ||
653 | |a Microbiology & Virology | ||
653 | |a Mikrobiologie | ||
653 | |a Mikrobiologie u. Virologie | ||
653 | |a CG20: Biochemische Verfahrenstechnik | ||
653 | |a LS35: Biotechnologie i. d. Biowissenschaften | ||
653 | |a LS50: Mikrobiologie u. Virologie | ||
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Cyanobakterien |0 (DE-588)4136726-1 |D s |
689 | 0 | 1 | |a Bioverfahrenstechnik |0 (DE-588)4307166-1 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Hudson, Paul |0 (DE-588)1235179974 |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-82492-2 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-82491-5 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, obook |z 978-3-527-82490-8 |
830 | 0 | |a Advanced biotechnology |v volume 12 |w (DE-604)BV043302234 |9 12 | |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34714-8/ |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1219753068/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033866363&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033866363 | ||
883 | 2 | |8 1\p |a dnb |d 20210728 |q DE-101 |u https://d-nb.info/provenance/plan#dnb |
Datensatz im Suchindex
_version_ | 1804184447981977600 |
---|---|
adam_text | CONTENTS
FOREWORD:
CYANOBACTERIA
BIOTECHNOLOGY
XV
ACKNOWLEDGMENTS
XVIII
PART
I
CORE
CYANOBACTERIA
PROCESSES
1
1
INORGANIC
CARBON
ASSIMILATION
IN
CYANOBACTERIA:
MECHANISMS,
REGULATION,
AND
ENGINEERING
3
MARTIN
HAGEMANN,
SHANSHAN
SONG,
AND
EVA-MARIA
BROUWER
1.1
INTRODUCTION
-
THE
NEED
FOR
A
CARBON-CONCENTRATING
MECHANISM
3
1.2
THE
CARBON-CONCENTRATING
MECHANISM
(CCM)
AMONG
CYANOBACTERIA
4
1.2.1
CJ
UPTAKE
PROTEINS/MECHANISMS
5
1.2.2
CARBOXYSOME
AND
RUBISCO
8
1.3
REGULATION
OF
CI
ASSIMILATION
10
1.3.1
REGULATION
OF
THE
CCM
10
1.3.2
FURTHER
REGULATION
OF
CARBON
ASSIMILATION
13
1.3.3
METABOLIC
CHANGES
AND
REGULATION
DURING
CI
ACCLIMATION
14
1.3.4
REDOX
REGULATION
OF
C
F
ASSIMILATION
15
1.4
ENGINEERING
THE
CYANOBACTERIAL
CCM
16
1.5
PHOTORESPIRATION
17
1.5.1
CYANOBACTERIAL
PHOTORESPIRATION
17
1.5.2
ATTEMPTS
TO
ENGINEER
PHOTORESPIRATION
19
1.6
CONCLUDING
REMARKS
20
ACKNOWLEDGMENTS
21
REFERENCES
21
2
ELECTRON
TRANSPORT
IN
CYANOBACTERIA
AND
ITS
POTENTIAL
IN
BIOPRODUCTION
33
DAVID
J.
LEA-SMITH
AND
GUY
T,
HANKE
2.1
INTRODUCTION
33
2.2
ELECTRON
TRANSPORT
IN
A
BIOENERGETIC
MEMBRANE
34
2.2.1
LINEAR
ELECTRON
TRANSPORT
34
VI
CONTENTS
2.2.2
2.2.3
2.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.5
2.5.1
2.5.2
2.6
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.8
CYCLIC
ELECTRON
TRANSPORT
37
ATP
PRODUCTION
FROM
LINEAR
AND
CYCLIC
ELECTRON
TRANSPORT
37
RESPIRATORY
ELECTRON
TRANSPORT
38
ROLE
OF
ELECTRON
SINKS
IN
PHOTOPROTECTION
41
TERMINAL
OXIDASES
41
HYDROGENASE
AND
FLAVODIIRON
COMPLEXES
41
CARBON
FIXATION
AND
PHOTORESPIRATION
43
EXTRACELLULAR
ELECTRON
EXPORT
44
REGULATING
ELECTRON
FLUX
INTO
DIFFERENT
PATHWAYS
45
ELECTRON
FLUX
THROUGH
THE
PLASTOQUINONE
POOL
45
ELECTRON
FLUX
THROUGH
FDX
46
SPATIAL
ORGANIZATION
OF
ELECTRON
TRANSPORT
COMPLEXES
47
MANIPULATING
ELECTRON
TRANSPORT
FOR
SYNTHETIC
BIOLOGY
APPLICATIONS
48
IMPROVING
GROWTH
OF
CYANOBACTERIA
49
PRODUCTION
OF
ELECTRICAL
POWER
IN
BPVS
49
HYDROGEN
PRODUCTION
50
PRODUCTION
OF
INDUSTRIAL
COMPOUNDS
50
FUTURE
CHALLENGES
IN
CYANOBACTERIAL
ELECTRON
TRANSPORT
51
REFERENCES
52
3
OPTIMIZING
THE
SPECTRAL
FIT
BETWEEN
CYANOBACTERIA
AND
SOLAR
RADIATION
IN
THE
LIGHT
OF
SUSTAINABILITY
APPLICATIONS
65
KLAAS
J.
HELLINGWERF,
QUE
CHEN,
AND
FILIPE
BRANCO
DOS
SANTOS
3.1
3.2
3.3
INTRODUCTION
65
MOLECULAR
BASIS
AND
EFFICIENCY
OF
OXYGENIC
PHOTOSYNTHESIS
67
FIT
BETWEEN
THE
SPECTRUM
OF
SOLAR
RADIATION
AND
THE
ACTION
SPECTRUM
OF
PHOTOSYNTHESIS
72
3.4
3.5
EXPANSION
OF
THE
PAR
REGION
OF
OXYGENIC
PHOTOSYNTHESIS
74
MODULATION
AND
OPTIMIZATION
OF
THE
TRANSPARENCY
OF
PHOTOBIOREACTORS
79
3.6
3.7
FULL
CONTROL
OF
THE
LIGHT
REGIME:
LEDS
INSIDE
THE
PBR
81
CONCLUSIONS
AND
PROSPECTS
82
REFERENCES
83
PART
II
CONCEPTS
IN
METABOLIC
ENGINEERING
89
4
WHAT
WE
CAN
LEARN
FROM
MEASURING
METABOLIC
FLUXES
IN
CYANOBACTERIA
91
XIANG
GAO,
CHAO
WU,
MICHAEL
CANTRELL,
MELISSA
CANO,
JIANPING
YU,
AND
WEI
XIONG
4.1
CENTRAL
CARBON
METABOLISM
IN
CYANOBACTERIA:
AN
OVERVIEW
AND
RENEWED
PATHWAY
KNOWLEDGE
91
4.1.1
4.1.2
GLYCOLYTIC
ROUTES
INTERWOVEN
WITH
THE
CALVIN
CYCLE
91
TRICARBOXYLIC
ACID
CYCLING
94
CONTENTS
|
VII
4.2
METHODOLOGIES FOR
PREDICTING
AND
QUANTIFYING
METABOLIC
FLUXES
IN
CYANOBACTERIA
95
4.2.1
FLUX
BALANCE
ANALYSIS
AND
GENOME-SCALE
RECONSTRUCTION
OF
METABOLIC
NETWORK
95
4.2.2
13
C-METABOLIC
FLUX
ANALYSIS
96
4.2.3
THERMODYNAMIC
ANALYSIS
AND
KINETICS
ANALYSIS
99
4.3
CYANOBACTERIA
FLUXOME
IN
RESPONSE
TO
ALTERED
NUTRIENT
MODES
AND
ENVIRONMENTAL
CONDITIONS
101
4.3.1
AUTOTROPHIC
FLUXOME
101
4.3.2
PHOTOMIXOTROPHIC
FLUXOME
104
4.3.3
HETEROTROPHIC
FLUXOME
105
4.3.4
PHOTOHETEROTROPHIC
FLUXOME
105
4.3.5
DIURNAL
METABOLITE
OSCILLATIONS
106
4.3.6
NUTRIENT
STATES
IMPACT
ON
METABOLIC
FLUX
107
4.4
METABOLIC
FLUXES
REDIRECTED
IN
CYANOBACTERIA
FOR
BIOMANUFACTURING
PURPOSES
108
4.4.1
RESTRUCTURING
THE
TCA
CYCLE
FOR
ETHYLENE
PRODUCTION
108
4.4.2
MAXIMIZING FLUX
IN
THE
ISOPRENOID
PATHWAY
109
4.4.2.1
MEASURING
PRECURSOR
POOL
SIZE
TO
EVALUATE
POTENTIAL
DRIVING
FORCES
FOR
ISOPRENOID
PRODUCTION
109
4.4.2.2
BALANCING
INTERMEDIATES
FOR
INCREASED
PATHWAY
ACTIVITY
110
4.4.2.3
KINETIC
FLUX
PROFILING
TO
DETECT
BOTTLENECKS
IN
THE
PATHWAY
111
4.5
SYNOPSIS
AND FUTURE
DIRECTIONS
112
ACKNOWLEDGMENTS
112
REFERENCES
112
5
SYNTHETIC
BIOLOGY
IN
CYANOBACTERIA
AND
APPLICATIONS
FOR
BIOTECHNOLOGY
123
ELTON
P.
HUDSON
5.1
INTRODUCTION
123
5.2
GETTING
GENES
INTO
CYANOBACTERIA
123
5.2.1
TRANSFORMATION
123
5.2.2
EXPRESSION
FROM
EPISOMAL
PLASMIDS
125
5.2.3
DELIVERY
OF
GENES
TO
THE
CHROMOSOME
127
5.3
BASIC
SYNTHETIC
CONTROL
OF
GENE
EXPRESSION
IN
CYANOBACTERIA
129
5.3.1
QUANTIFYING
TRANSCRIPTION
AND
TRANSLATION
IN
CYANOBACTERIA
130
5.3.2
CONTROLLING
TRANSCRIPTION
WITH
SYNTHETIC
PROMOTERS
134
5.3.2.1
CONSTITUTIVE
PROMOTERS
136
53.2.2
REGULATED
PROMOTERS
THAT
ARE
SENSITIVE
TO
ADDED
COMPOUNDS
(INDUCIBLE)
137
53.23
CRISPR
INTERFERENCE
FOR
TRANSCRIPTIONAL
REPRESSION
139
5.3.3
CONTROLLING
TRANSLATION
141
5.3.3.1
RIBOSOME
BINDING
SITES
(CIS-ACTING)
141
533.2
RIBOSWITCHES
(CIS-ACTING)
142
5333
SMALL
RNAS
(TRANS-ACTING)
143
VIII
CONTENTS
5.4
EXOTIC
SIGNALS
FOR
CONTROLLING
EXPRESSION
143
5.4.1
OXYGEN
144
5.4.2
LIGHT
COLOR
144
5.4.3
CELL
DENSITY
OR
GROWTH
PHASE
145
5.4.4
ENGINEERING
REGULATORS
FOR
ALTERED
SENSING
PROPERTIES:
STATE
OF
THE
ART
147
5.5
ADVANCED
REGULATION:
THE
NEAR
FUTURE
148
5.5.1
LOGIC
GATES
AND
TIMING
CIRCUITS
148
5.5.2
ORTHOGONAL
TRANSCRIPTION
SYSTEMS
151
5.5.3
SYNTHETIC
BIOLOGY
SOLUTIONS
TO
INCREASE
STABILITY
152
5.5.4
SYNTHETIC
BIOLOGY
SOLUTIONS
FOR
CELL
SEPARATION
AND
PRODUCT
RECOVERY
154
5.6
CONCLUSIONS
157
ACKNOWLEDGMENTS
158
REFERENCES
158
6
SINK
ENGINEERING
IN
PHOTOSYNTHETIC
MICROBES
171
MARIA
SANTOS-MERINO,
AMIT
K.
SINGH,
AND
DANIEL
C.
DUCAT
6.1
INTRODUCTION
171
6.2
SOURCE
AND
SINK
172
6.3
REGULATION
OF
SINK
ENERGY
IN
PLANTS
177
6.3.1
SUCROSE
AND
OTHER
SIGNALING
CARBOHYDRATES
178
6.3.2
HEXOKINASES
179
6.3.3
SUCROSE
NON-FERMENTING
RELATED
KINASES
180
6.3.4
TOR
KINASE
181
6.3.5
ENGINEERED
PATHWAYS
AS
SINKS
IN
PHOTOSYNTHETIC
MICROBES
182
6.3.6
SUCROSE
183
6.3.7
2,3-BUTANEDIOL
187
6.3.8
ETHYLENE
187
6.3.9
GLYCEROL
188
6.3.10
ISOBUTANOL
188
6.3.11
ISOPRENE
189
6.3.12
LIMONENE
189
6.3.13
P450,
AN
ELECTRON
SINK
190
6.4
WHAT
ARE
KEY
SOURCE/SINK
REGULATORY
HUBS
IN
PHOTOSYNTHETIC
MICROBES?
191
6.5
CONCLUDING
REMARKS
194
ACKNOWLEDGMENT
195
REFERENCES
195
7
DESIGN
PRINCIPLES
FOR
ENGINEERING
METABOLIC
PATHWAYS
IN
CYANOBACTERIA
211
JASON
T.
KU
AND
ETHAN
I.
LAN
7.1
INTRODUCTION
211
7.2
COFACTOR
OPTIMIZATION
212
CONTENTS
IX
7.2.1
7.2.2
7.2.3
RECRUITING
NADPH-DEPENDENT
ENZYMES
WHEREVER
POSSIBLE
215
ENGINEERING
NADH-SPECIFIC
ENZYMES
TO
UTILIZE
NADPH
217
INCREASING
NADH
POOL
IN
CYANOBACTERIA
THROUGH
EXPRESSION
OF
TRANSHYDROGENASE
218
7.3
INCORPORATION
OF
THERMODYNAMIC
DRIVING
FORCE
INTO
METABOLIC
PATHWAY
DESIGN
219
7.3.1
7.3.2
ATP
DRIVING
FORCE
IN
METABOLIC
PATHWAYS
220
INCREASING
SUBSTRATE
POOL
SUPPORTS
THE
CARBON
FLUX
TOWARD
PRODUCTS
222
7.3.3
7.4
PRODUCT
REMOVAL
UNBLOCKS
THE
LIMITATIONS
OF
PRODUCT
TITER
223
DEVELOPMENT
OF
SYNTHETIC
PATHWAYS
FOR
CARBON
CONSERVING
PHOTORESPIRATION
AND
ENHANCED
CARBON
FIXATION
225
7.5
SUMMARY
AND
FUTURE
PERSPECTIVE
ON
CYANOBACTERIAL
METABOLIC
ENGINEERING
229
REFERENCES
229
8
ENGINEERING
CYANOBACTERIA
FOR
EFFICIENT
PHOTOSYNTHETIC
PRODUCTION:
ETHANOL
CASE
STUDY
237
GUODONG
LUAN
AND
XUEFENG
LU
8.1
8.2
8.2.1
8.2.2
8.2.3
8.3
INTRODUCTION
237
PATHWAY
FOR
ETHANOL
SYNTHESIS
IN
CYANOBACTERIA
238
PYRUVATE
DECARBOXYLASE
AND
TYPE
II
ALCOHOL
DEHYDROGENASE
238
SELECTION
OF
BETTER
ENZYMES
IN THE
PDC-ADHII
PATHWAY
240
SYSTEMATIC
CHARACTERIZATION
OF
THE
PDC
ZM
-SLRLL92
PATHWAY
241
SELECTION
OF
OPTIMAL
CYANOBACTERIA
CHASSIS,
STRAIN
FOR
ETHANOL
PRODUCTION
242
8.3.1
8.3.2
8.3.3
8.3.4
8.4
SYNECHOCOCCUS
PCC
6803
AND
SYNECHOCOCCUS
PCC
7942
243
SYNECHOCOCCUS
PCC
7002
245
ANABAENA
PCC
7120
245
NONCONVENTIONAL
CYANOBACTERIA
SPECIES
246
METABOLIC
ENGINEERING
STRATEGIES
TOWARD
MORE
EFFICIENT
AND
STABLE
ETHANOL
PRODUCTION
246
8.4.1
ENHANCING
THE
CARBON
FLUX
VIA
OVEREXPRESSION
OF
CALVIN
CYCLE
ENZYMES
248
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
BLOCKING
PATHWAYS
THAT
ARE
COMPETITIVE
TO
ETHANOL
248
ARRESTING
BIOMASS
FORMATION
249
ENGINEERING
COFACTOR
SUPPLY
249
ENGINEERING
STRATEGIES
GUIDED
BY
IN
SILICO
SIMULATION
250
STABILIZING
ETHANOL
SYNTHESIS
CAPACITY
IN
CYANOBACTERIAL
CELL
FACTORIES
251
8.5
8.5.1
EXPLORING
THE
RESPONSE
IN
CYANOBACTERIA
TO
ETHANOL
253
RESPONSE
OF
CYANOBACTERIAL
CELLS
TOWARD
EXOGENOUS
ADDED
ETHANOL
254
8.5.2
RESPONSE
OF
CYANOBACTERIA
TO
ENDOGENOUS
SYNTHESIZED
ETHANOL
255
CONTENTS
8.6
METABOLIC
ENGINEERING
STRATEGIES
TO
FACILITATE
ROBUST
CULTIVATION
AGAINST
BIOCONTAMINANTS
256
8.6.1
ENGINEERING
CYANOBACTERIA
CELL
FACTORIES
TO
ADAPT
FOR
SELECTIVE
ENVIRONMENTAL
STRESSES
256
8.6.2
ENGINEERING
CYANOBACTERIA
CELL
FACTORIES
TO
UTILIZE
UNCOMMON
NUTRIENTS
258
8.7
CONCLUSIONS
AND
PERSPECTIVES
258
REFERENCES
259
9
ENGINEERING
CYANOBACTERIA
AS
HOST
ORGANISMS
FOR
PRODUCTION
OF
TERPENES
AND
TERPENOIDS
267
JOAO
S.
RODRIGUES
AND
PIA
LINDBERG
9.1
TERPENOIDS
AND
INDUSTRIAL
APPLICATIONS
267
9.2
TERPENOID
BIOSYNTHESIS
IN
CYANOBACTERIA
270
9.2.1
METHYLERYTHRITOL-4-PHOSPHATE
PATHWAY
270
9.2.2
FORMATION
OF
TERPENE
BACKBONES
272
9.3
NATURAL
OCCURRENCE
AND
PHYSIOLOGICAL
ROLES
OF
TERPENES
AND
TERPENOIDS
IN
CYANOBACTERIA
274
9.4
ENGINEERING
CYANOBACTERIA
FOR
TERPENOID
PRODUCTION
275
9.4.1
METABOLIC
ENGINEERING
277
9.4.1.1
TERPENE
SYNTHASES
277
9.4.1.2
INCREASING
SUPPLY
OF
TERPENE
BACKBONES
285
9.4.1.3
ENGINEERING
THE
NATIVE
MEP
PATHWAY
286
9.4.1.4
IMPLEMENTING
THE
MVA
PATHWAY
287
9.4.1.5
ENHANCING
PRECURSOR
SUPPLY
288
9.4.2
OPTIMIZING
GROWTH
CONDITIONS
FOR
PRODUCTION
289
9.4.3
PRODUCT
CAPTURE
AND
HARVESTING
291
9.5
SUMMARY
AND
OUTLOOK
292
ACKNOWLEDGMENTS
293
REFERENCES
293
10
CYANOBACTERIAL
BIOPOLYMERS
301
MORITZ
KOCH
AND
KARL
FORCHHAMMER
10.1
POLYHYDROXYBUTRYATE
301
10.1.1
INTRODUCTION
301
10.1.2
PHB
METABOLISM
IN
CYANOBACTERIA
302
10.1.3
INDUSTRIAL
APPLICATIONS
OF
PHB
305
10.1.3.1
PHYSICAL
PROPERTIES
OF
PHB
AND
ITS
DERIVATIVES
305
10.1.3.2
BIODEGRADABILITY
306
10.1.3.3
APPLICATION
OF
PHB
AS
A
PLASTIC
306
10.1.3.4
REACTOR
TYPES
306
10.1.3.5
PRODUCTION
PROCESS
307
10.1.3.6
DOWNSTREAM
PROCESSING
308
10.1.4
METABOLIC
ENGINEERING
OF
PHB
BIOSYNTHESIS
308
10.1.5
LIMITATIONS
AND
POTENTIAL
OF
PHB
PRODUCTION
IN
CYANOBACTERIA
310
CONTENTS
XI
10.2
CYANOPHYCIN
GRANULES
IN
CYANOBACTERIA
311
10.2.1
BIOLOGY
OF
CYANOPHYCIN
311
10.2.2
GENES
AND
ENZYMES
OF
CGP
METABOLISM
315
10.2.2.1
CYANOPHYCIN
SYNTHETASE
315
10.2.2.2
CYANOPHYCIN
DEGRADING ENZYMES
316
10.2.3
REGULATION
OF
CYANOPHYCIN
METABOLISM
317
10.2.4
CYANOPHYCIN
OVERPRODUCTION
AND
POTENTIAL
INDUSTRIAL
APPLICATIONS
318
ACKNOWLEDGEMENT
319
REFERENCES
319
11
BIOSYNTHESIS
OF
FATTY
ACID
DERIVATIVES
BY
CYANOBACTERIA:
FROM
BASICS
TO
BIOFUEL
PRODUCTION
331
AKIHITO
KAWAHARA
AND
YUKAKO
HIHARA
11.1
INTRODUCTION
331
11.2
OVERVIEW
OF
FATTY
ACID
METABOLISM
332
11.2.1
FATTY
ACID
BIOSYNTHESIS
332
11.2.2
FATTY
ACID
DEGRADATION
AND
TURNOVER
335
11.2.3
ACCUMULATION
OF
STORAGE
LIPIDS
336
11.3
BASIC
TECHNOLOGIES
FOR
PRODUCTION
OF
FREE
FATTY
ACIDS
337
11.3.1
PRODUCTION
OF
FREE
FATTY
ACIDS
IN
E.
COLI
337
11.3.2
PRODUCTION
OF
FREE
FATTY
ACIDS
IN
CYANOBACTERIA
338
11.4
ADVANCED
TECHNOLOGIES
FOR
ENHANCEMENT
OF
FREE
FATTY
ACID
PRODUCTION
339
11.4.1
ENHANCEMENT
OF
FATTY
ACID
BIOSYNTHESIS
339
11.4.2
ENHANCEMENT
OF
CARBON
FIXATION
ACTIVITY
345
11.4.3
ENGINEERING
OF
CARBON
FLOW:
MODIFICATION
OF
KEY
REGULATORY
FACTORS
345
11.4.4
ENGINEERING
OF
CARBON
FLOW:
DELETION
OF
COMPETITIVE
PATHWAYS
346
11.4.5
MITIGATION
OF
THE
TOXICITY
OF
FFAS
347
11.4.6
ENHANCEMENT
OF
FFA
SECRETION
348
11.4.7
INDUCTION
OF
CELL
LYSIS
349
11.4.8
RECOVERY
OF
PRODUCED
FFAS
FROM
MEDIUM
350
11.4.9
IDENTIFICATION
OF
CYANOBACTERIAL
STRAINS
SUITABLE
FOR
FFA
PRODUCTION
350
11.5
HYDROCARBON
PRODUCTION
IN
CYANOBACTERIA
351
11.6
ADVANCED
TECHNOLOGIES
FOR
ENHANCEMENT
OF
HYDROCARBON
PRODUCTION
353
11.6.1
ENHANCEMENT
OF
ALK(A/E)NE
BIOSYNTHESIS
353
11.6.2
IMPROVEMENT
OF
THE
PERFORMANCE
OF
ALKANE
BIOSYNTHETIC
ENZYMES
354
11.7
BASIC
TECHNOLOGIES
FOR
PRODUCTION
OF
FATTY
ALCOHOLS
355
11.8
ADVANCED
TECHNOLOGIES
FOR
ENHANCEMENT
OF
FATTY
ALCOHOL
PRODUCTION
355
11.9
BASIC
TECHNOLOGIES
FOR
PRODUCTION
OF
FATTY
ACID
ALKYL
ESTERS
356
11.10
PERSPECTIVES
357
REFERENCES
358
XII
CONTENTS
12
PRODUCT
EXPORT
IN
CYANOBACTERIA
369
CATIA
F.
GONCALVES,
STEEVE
LIMA,
AND
PAULO
OLIVEIRA
12.1
INTRODUCTION
369
12.2
SECRETION
MEDIATED
BY
MEMBRANE-EMBEDDED
SYSTEMS
373
12.2.1
PROTEINS
373
12.2.2
EXTRACELLULAR
POLYMERIC
SUBSTANCES
(EPS)
377
12.2.3
SOLUBLE
SUGARS
AND
ORGANIC
ACIDS
379
12.2.4
FATTY
ACIDS
381
12.2.5
ALCOHOLS
382
12.2.6
TERPENES
384
12.3
MV-MEDIATED
SECRETION
386
12.3.1
STRUCTURE
AND
BIOGENESIS
OF
BACTERIAL
MVS
386
12.3.1.1
CYANOBACTERIAL
MVS
388
12.3.2
MVS
AS
NOVEL
BIOTECHNOLOGICAL
TOOLS
389
12.4
CONCLUDING
REMARKS
391
ACKNOWLEDGMENTS
392
REFERENCES
392
PART
III
FRONTIERS
OF
CYANOBACTERIA
BIOTECHNOLOGY
407
13
HARNESSING
SOLAR-POWERED
OXIC
N
2
-FIXING
CYANOBACTERIA
FOR
THE
BIONITROGEN
ECONOMY
409
JAMES
YOUNG,
LIPING
GU,
WILLIAM
GIBBONS,
AND
RUANBAO
ZHOU
13.1
INTRODUCTION
409
13.2
PHYSIOLOGY
AND
IMPLICATIONS
OF
OXIC
NITROGEN
FIXATION
410
13.2.1
ECOLOGICAL
RANGE
411
13.2.2
BALANCING
PHOTOSYNTHESIS
AND
NITROGEN
FIXATION
412
13.2.3
ENERGETIC
DEMANDS
AND
HOW
THE
CELLS
ADAPT
412
13.2.4
IMPACTS
OF
CONTINUOUS
LIGHT
VS
DARK-LIGHT
CYCLES
416
13.3
MAJOR
BIOTECHNOLOGY
APPLICATIONS
FOR
DIAZOTROPHIC
CYANOBACTERIA
417
13.3.1
GENERAL
ECONOMIC
AND
ENVIRONMENTAL
CONSIDERATIONS
OF
DIAZOTROPHIC
CYANOBACTERIA
417
13.3.2
METABOLIC
ENGINEERING
OF
N
2
-FIXING
CYANOBACTERIA
FOR
CARBON
COMPOUND
PRODUCTION
420
13.3.2.1
DIRECT
PRODUCTION
OF
BIOFUELS
420
13.3.2.2
CYANOBACTERIA
AS
A
FERMENTABLE
SUBSTRATE
420
13.3.3
METABOLIC
ENGINEERING
OF
NITROGEN
FIXING
CYANOBACTERIA
FOR
NITROGEN-RICH
COMPOUND
PRODUCTION
422
13.3.3.1
AMMONIA
422
13.3.3.2
GUANIDINE
423
13.3.3.3
CYANOPHYCIN
423
13.3.3.4
AMINO
ACIDS
AND
PROTEINS
423
13.3.4
APPLICATION
OF
DIAZOTROPHIC
CYANOBACTERIA
IN
AGRICULTURE
425
CONTENTS
XIII
13.4
CONCLUSIONS
428
REFERENCES
428
14
TRAITS
OF
FAST-GROWING
CYANOBACTERIA
441
MEGHNA
SRIVASTAVA,
ELTON
P.
HUDSON,
AND
PRAMOD
P.
WANGIKAR
14.1
14.2
14.3
INTRODUCTION
441
WHY
IS
GROWTH
RATE
SIGNIFICANT?
442
AN
OVERVIEW
OF
FACTORS
AFFECTING
THE
GROWTH
RATES
OF
CYANOBACTERIA
446
14.3.1
14.3.2
14.3.3
14.3.4
14.3.4.1
14.3.4.2
14.3.4.3
14.3.4.4
14.3.5
14.4
14.4.1
14.4.2
14.4.3
14.4.4
14.5
LIGHT
INTENSITY
AND
QUALITY
448
MIXOTROPHIC
GROWTH
451
CIRCADIAN
RHYTHM
451
ADDITIONAL
FACTORS
RELATING
TO
GROWTH
RATES
IN
CYANOBACTERIA
452
CELL
MORPHOLOGY
453
GENOME
SIZE
453
SALTWATER
TOLERANCE
454
NUTRIENT
SUPPLEMENTATION
454
CARBON
STORAGE
455
OVERVIEW
OF
THE
FAST-GROWING
MODEL
CYANOBACTERIA
455
SYNECHOCOCCUS
ELONGATUS
UTEX
2973
455
SYNECHOCOCCUS
ELONGATUS
PCC
11801
456
SYNECHOCOCCUS
SP.
PCC
11901
456
SYNECHOCOCCUS
SP.
PCC
7002
457
RELATIONSHIP
BETWEEN
LIGHT
USAGE
AND
GROWTH
RATE
IN
MODEL
STRAINS
458
14.5.1
14.5.2
14.6
14.7
CASE
STUDY:
THE
PMGA
MUTANT
OF
SYNECHOCYSTIS
458
CASE
STUDY:
THE
S.
ELONGATUS
7942
AND
S.
ELONGATUS
2973
STRAINS
460
MOLECULAR
DETERMINANTS
OF
FAST
GROWTH
OF
S ,
ELONGATUS
UTEX
2973
460
CARBON
FLUXES
IN
FAST-GROWING
STRAINS
DETERMINED
USING
METABOLIC
FLUX
ANALYSIS
463
14.8
14.8.1
14.8.2
14.8.3
14.9
ENGINEERING
CYANOBACTERIA
FOR FAST
GROWTH
465
CALVIN
CYCLE
ENZYMES
465
PEP
CARBOXYLASE
466
CARBON
AND
LIGHT
UPTAKE
PROTEINS
467
CONCLUSION
468
REFERENCES
468
15
CYANOBACTERIAL
BIOFILMS
IN
NATURAL
AND
SYNTHETIC
ENVIRONMENTS
477
CHRISTIAN
DAVID,
ROHAN
KARANDE,
AND
KATJA
BUHLER
15.1
15.2
15.3
15.4
15.5
MOTIVATION
477
INTRODUCTION
TO
BIOFILMS:
BIOLOGY
AND
APPLICATIONS
478
CYANOBACTERIA
IN
NATURAL
BIOFILMS
AND
MICROBIAL
MATS
483
INTRODUCTION
TO
(PHOTO-)BIOTECHNOLOGY
484
BENEFITS
OF
MICROSCALE
SYSTEMS
FOR
(PHOTO-)BIOFILM
CULTIVATION
487
XIV
CONTENTS
INDEX
531
15.6
15.7
15.8
15.8.1
15.8.2
15.9
OXYGEN
ACCUMULATION
AND
ITS
IMPACTS
488
RESOURCE
MANAGEMENT
IN
BIOFILMS
491
APPLICATIONS
OF
PHOTOSYNTHETIC
BIOFILMS
493
BIOFILMS
ENABLE
HIGH
CELL
DENSITIES
497
BIOFILMS
ENABLE
CONTINUOUS
PRODUCTION
498
OUTLOOK
499
REFERENCES
499
16
GROWTH
OF
PHOTOSYNTHETIC
MICROORGANISMS
IN
DIFFERENT
PHOTOBIOREACTORS
OPERATED
OUTDOORS
505
ELEFTHERIOS
TOULOUPAKIS
AND
PIETRO
CARLOZZI
16.1
16.1.1
16.1.2
16.1.3
16.2
BACKGROUND
505
PHOTOBIOLOGICAL
HYDROGEN
PRODUCTION
506
POLYHYDROXYALKANOATE
PRODUCTION
BY
PHOTOSYNTHETIC
MICROBES
508
PHOTOBIOREACTORS
509
CASE
STUDIES
OF
OUTDOOR
CULTIVATIONS
OF
PHOTOSYNTHETIC
MICROORGANISMS
513
16.2.1
OUTDOOR
CULTURES
OF
PURPLE
NON-SULFUR
BACTERIA
FOR
H
2
AND
PHB
PRODUCTION
513
16.2.2
16.3
OUTDOOR
CULTURES
OF
CYANOBACTERIA
516
CONCLUSION
517
ACKNOWLEDGMENTS
519
REFERENCES
519
|
adam_txt |
CONTENTS
FOREWORD:
CYANOBACTERIA
BIOTECHNOLOGY
XV
ACKNOWLEDGMENTS
XVIII
PART
I
CORE
CYANOBACTERIA
PROCESSES
1
1
INORGANIC
CARBON
ASSIMILATION
IN
CYANOBACTERIA:
MECHANISMS,
REGULATION,
AND
ENGINEERING
3
MARTIN
HAGEMANN,
SHANSHAN
SONG,
AND
EVA-MARIA
BROUWER
1.1
INTRODUCTION
-
THE
NEED
FOR
A
CARBON-CONCENTRATING
MECHANISM
3
1.2
THE
CARBON-CONCENTRATING
MECHANISM
(CCM)
AMONG
CYANOBACTERIA
4
1.2.1
CJ
UPTAKE
PROTEINS/MECHANISMS
5
1.2.2
CARBOXYSOME
AND
RUBISCO
8
1.3
REGULATION
OF
CI
ASSIMILATION
10
1.3.1
REGULATION
OF
THE
CCM
10
1.3.2
FURTHER
REGULATION
OF
CARBON
ASSIMILATION
13
1.3.3
METABOLIC
CHANGES
AND
REGULATION
DURING
CI
ACCLIMATION
14
1.3.4
REDOX
REGULATION
OF
C
F
ASSIMILATION
15
1.4
ENGINEERING
THE
CYANOBACTERIAL
CCM
16
1.5
PHOTORESPIRATION
17
1.5.1
CYANOBACTERIAL
PHOTORESPIRATION
17
1.5.2
ATTEMPTS
TO
ENGINEER
PHOTORESPIRATION
19
1.6
CONCLUDING
REMARKS
20
ACKNOWLEDGMENTS
21
REFERENCES
21
2
ELECTRON
TRANSPORT
IN
CYANOBACTERIA
AND
ITS
POTENTIAL
IN
BIOPRODUCTION
33
DAVID
J.
LEA-SMITH
AND
GUY
T,
HANKE
2.1
INTRODUCTION
33
2.2
ELECTRON
TRANSPORT
IN
A
BIOENERGETIC
MEMBRANE
34
2.2.1
LINEAR
ELECTRON
TRANSPORT
34
VI
CONTENTS
2.2.2
2.2.3
2.3
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.5
2.5.1
2.5.2
2.6
2.7
2.7.1
2.7.2
2.7.3
2.7.4
2.8
CYCLIC
ELECTRON
TRANSPORT
37
ATP
PRODUCTION
FROM
LINEAR
AND
CYCLIC
ELECTRON
TRANSPORT
37
RESPIRATORY
ELECTRON
TRANSPORT
38
ROLE
OF
ELECTRON
SINKS
IN
PHOTOPROTECTION
41
TERMINAL
OXIDASES
41
HYDROGENASE
AND
FLAVODIIRON
COMPLEXES
41
CARBON
FIXATION
AND
PHOTORESPIRATION
43
EXTRACELLULAR
ELECTRON
EXPORT
44
REGULATING
ELECTRON
FLUX
INTO
DIFFERENT
PATHWAYS
45
ELECTRON
FLUX
THROUGH
THE
PLASTOQUINONE
POOL
45
ELECTRON
FLUX
THROUGH
FDX
46
SPATIAL
ORGANIZATION
OF
ELECTRON
TRANSPORT
COMPLEXES
47
MANIPULATING
ELECTRON
TRANSPORT
FOR
SYNTHETIC
BIOLOGY
APPLICATIONS
48
IMPROVING
GROWTH
OF
CYANOBACTERIA
49
PRODUCTION
OF
ELECTRICAL
POWER
IN
BPVS
49
HYDROGEN
PRODUCTION
50
PRODUCTION
OF
INDUSTRIAL
COMPOUNDS
50
FUTURE
CHALLENGES
IN
CYANOBACTERIAL
ELECTRON
TRANSPORT
51
REFERENCES
52
3
OPTIMIZING
THE
SPECTRAL
FIT
BETWEEN
CYANOBACTERIA
AND
SOLAR
RADIATION
IN
THE
LIGHT
OF
SUSTAINABILITY
APPLICATIONS
65
KLAAS
J.
HELLINGWERF,
QUE
CHEN,
AND
FILIPE
BRANCO
DOS
SANTOS
3.1
3.2
3.3
INTRODUCTION
65
MOLECULAR
BASIS
AND
EFFICIENCY
OF
OXYGENIC
PHOTOSYNTHESIS
67
FIT
BETWEEN
THE
SPECTRUM
OF
SOLAR
RADIATION
AND
THE
ACTION
SPECTRUM
OF
PHOTOSYNTHESIS
72
3.4
3.5
EXPANSION
OF
THE
PAR
REGION
OF
OXYGENIC
PHOTOSYNTHESIS
74
MODULATION
AND
OPTIMIZATION
OF
THE
TRANSPARENCY
OF
PHOTOBIOREACTORS
79
3.6
3.7
FULL
CONTROL
OF
THE
LIGHT
REGIME:
LEDS
INSIDE
THE
PBR
81
CONCLUSIONS
AND
PROSPECTS
82
REFERENCES
83
PART
II
CONCEPTS
IN
METABOLIC
ENGINEERING
89
4
WHAT
WE
CAN
LEARN
FROM
MEASURING
METABOLIC
FLUXES
IN
CYANOBACTERIA
91
XIANG
GAO,
CHAO
WU,
MICHAEL
CANTRELL,
MELISSA
CANO,
JIANPING
YU,
AND
WEI
XIONG
4.1
CENTRAL
CARBON
METABOLISM
IN
CYANOBACTERIA:
AN
OVERVIEW
AND
RENEWED
PATHWAY
KNOWLEDGE
91
4.1.1
4.1.2
GLYCOLYTIC
ROUTES
INTERWOVEN
WITH
THE
CALVIN
CYCLE
91
TRICARBOXYLIC
ACID
CYCLING
94
CONTENTS
|
VII
4.2
METHODOLOGIES FOR
PREDICTING
AND
QUANTIFYING
METABOLIC
FLUXES
IN
CYANOBACTERIA
95
4.2.1
FLUX
BALANCE
ANALYSIS
AND
GENOME-SCALE
RECONSTRUCTION
OF
METABOLIC
NETWORK
95
4.2.2
13
C-METABOLIC
FLUX
ANALYSIS
96
4.2.3
THERMODYNAMIC
ANALYSIS
AND
KINETICS
ANALYSIS
99
4.3
CYANOBACTERIA
FLUXOME
IN
RESPONSE
TO
ALTERED
NUTRIENT
MODES
AND
ENVIRONMENTAL
CONDITIONS
101
4.3.1
AUTOTROPHIC
FLUXOME
101
4.3.2
PHOTOMIXOTROPHIC
FLUXOME
104
4.3.3
HETEROTROPHIC
FLUXOME
105
4.3.4
PHOTOHETEROTROPHIC
FLUXOME
105
4.3.5
DIURNAL
METABOLITE
OSCILLATIONS
106
4.3.6
NUTRIENT
STATES
'
IMPACT
ON
METABOLIC
FLUX
107
4.4
METABOLIC
FLUXES
REDIRECTED
IN
CYANOBACTERIA
FOR
BIOMANUFACTURING
PURPOSES
108
4.4.1
RESTRUCTURING
THE
TCA
CYCLE
FOR
ETHYLENE
PRODUCTION
108
4.4.2
MAXIMIZING FLUX
IN
THE
ISOPRENOID
PATHWAY
109
4.4.2.1
MEASURING
PRECURSOR
POOL
SIZE
TO
EVALUATE
POTENTIAL
DRIVING
FORCES
FOR
ISOPRENOID
PRODUCTION
109
4.4.2.2
BALANCING
INTERMEDIATES
FOR
INCREASED
PATHWAY
ACTIVITY
110
4.4.2.3
KINETIC
FLUX
PROFILING
TO
DETECT
BOTTLENECKS
IN
THE
PATHWAY
111
4.5
SYNOPSIS
AND FUTURE
DIRECTIONS
112
ACKNOWLEDGMENTS
112
REFERENCES
112
5
SYNTHETIC
BIOLOGY
IN
CYANOBACTERIA
AND
APPLICATIONS
FOR
BIOTECHNOLOGY
123
ELTON
P.
HUDSON
5.1
INTRODUCTION
123
5.2
GETTING
GENES
INTO
CYANOBACTERIA
123
5.2.1
TRANSFORMATION
123
5.2.2
EXPRESSION
FROM
EPISOMAL
PLASMIDS
125
5.2.3
DELIVERY
OF
GENES
TO
THE
CHROMOSOME
127
5.3
BASIC
SYNTHETIC
CONTROL
OF
GENE
EXPRESSION
IN
CYANOBACTERIA
129
5.3.1
QUANTIFYING
TRANSCRIPTION
AND
TRANSLATION
IN
CYANOBACTERIA
130
5.3.2
CONTROLLING
TRANSCRIPTION
WITH
SYNTHETIC
PROMOTERS
134
5.3.2.1
CONSTITUTIVE
PROMOTERS
136
53.2.2
REGULATED
PROMOTERS
THAT
ARE
SENSITIVE
TO
ADDED
COMPOUNDS
(INDUCIBLE)
137
53.23
CRISPR
INTERFERENCE
FOR
TRANSCRIPTIONAL
REPRESSION
139
5.3.3
CONTROLLING
TRANSLATION
141
5.3.3.1
RIBOSOME
BINDING
SITES
(CIS-ACTING)
141
533.2
RIBOSWITCHES
(CIS-ACTING)
142
5333
SMALL
RNAS
(TRANS-ACTING)
143
VIII
CONTENTS
5.4
EXOTIC
SIGNALS
FOR
CONTROLLING
EXPRESSION
143
5.4.1
OXYGEN
144
5.4.2
LIGHT
COLOR
144
5.4.3
CELL
DENSITY
OR
GROWTH
PHASE
145
5.4.4
ENGINEERING
REGULATORS
FOR
ALTERED
SENSING
PROPERTIES:
STATE
OF
THE
ART
147
5.5
ADVANCED
REGULATION:
THE
NEAR
FUTURE
148
5.5.1
LOGIC
GATES
AND
TIMING
CIRCUITS
148
5.5.2
ORTHOGONAL
TRANSCRIPTION
SYSTEMS
151
5.5.3
SYNTHETIC
BIOLOGY
SOLUTIONS
TO
INCREASE
STABILITY
152
5.5.4
SYNTHETIC
BIOLOGY
SOLUTIONS
FOR
CELL
SEPARATION
AND
PRODUCT
RECOVERY
154
5.6
CONCLUSIONS
157
ACKNOWLEDGMENTS
158
REFERENCES
158
6
SINK
ENGINEERING
IN
PHOTOSYNTHETIC
MICROBES
171
MARIA
SANTOS-MERINO,
AMIT
K.
SINGH,
AND
DANIEL
C.
DUCAT
6.1
INTRODUCTION
171
6.2
SOURCE
AND
SINK
172
6.3
REGULATION
OF
SINK
ENERGY
IN
PLANTS
177
6.3.1
SUCROSE
AND
OTHER
SIGNALING
CARBOHYDRATES
178
6.3.2
HEXOKINASES
179
6.3.3
SUCROSE
NON-FERMENTING
RELATED
KINASES
180
6.3.4
TOR
KINASE
181
6.3.5
ENGINEERED
PATHWAYS
AS
SINKS
IN
PHOTOSYNTHETIC
MICROBES
182
6.3.6
SUCROSE
183
6.3.7
2,3-BUTANEDIOL
187
6.3.8
ETHYLENE
187
6.3.9
GLYCEROL
188
6.3.10
ISOBUTANOL
188
6.3.11
ISOPRENE
189
6.3.12
LIMONENE
189
6.3.13
P450,
AN
ELECTRON
SINK
190
6.4
WHAT
ARE
KEY
SOURCE/SINK
REGULATORY
HUBS
IN
PHOTOSYNTHETIC
MICROBES?
191
6.5
CONCLUDING
REMARKS
194
ACKNOWLEDGMENT
195
REFERENCES
195
7
DESIGN
PRINCIPLES
FOR
ENGINEERING
METABOLIC
PATHWAYS
IN
CYANOBACTERIA
211
JASON
T.
KU
AND
ETHAN
I.
LAN
7.1
INTRODUCTION
211
7.2
COFACTOR
OPTIMIZATION
212
CONTENTS
IX
7.2.1
7.2.2
7.2.3
RECRUITING
NADPH-DEPENDENT
ENZYMES
WHEREVER
POSSIBLE
215
ENGINEERING
NADH-SPECIFIC
ENZYMES
TO
UTILIZE
NADPH
217
INCREASING
NADH
POOL
IN
CYANOBACTERIA
THROUGH
EXPRESSION
OF
TRANSHYDROGENASE
218
7.3
INCORPORATION
OF
THERMODYNAMIC
DRIVING
FORCE
INTO
METABOLIC
PATHWAY
DESIGN
219
7.3.1
7.3.2
ATP
DRIVING
FORCE
IN
METABOLIC
PATHWAYS
220
INCREASING
SUBSTRATE
POOL
SUPPORTS
THE
CARBON
FLUX
TOWARD
PRODUCTS
222
7.3.3
7.4
PRODUCT
REMOVAL
UNBLOCKS
THE
LIMITATIONS
OF
PRODUCT
TITER
223
DEVELOPMENT
OF
SYNTHETIC
PATHWAYS
FOR
CARBON
CONSERVING
PHOTORESPIRATION
AND
ENHANCED
CARBON
FIXATION
225
7.5
SUMMARY
AND
FUTURE
PERSPECTIVE
ON
CYANOBACTERIAL
METABOLIC
ENGINEERING
229
REFERENCES
229
8
ENGINEERING
CYANOBACTERIA
FOR
EFFICIENT
PHOTOSYNTHETIC
PRODUCTION:
ETHANOL
CASE
STUDY
237
GUODONG
LUAN
AND
XUEFENG
LU
8.1
8.2
8.2.1
8.2.2
8.2.3
8.3
INTRODUCTION
237
PATHWAY
FOR
ETHANOL
SYNTHESIS
IN
CYANOBACTERIA
238
PYRUVATE
DECARBOXYLASE
AND
TYPE
II
ALCOHOL
DEHYDROGENASE
238
SELECTION
OF
BETTER
ENZYMES
IN THE
PDC-ADHII
PATHWAY
240
SYSTEMATIC
CHARACTERIZATION
OF
THE
PDC
ZM
-SLRLL92
PATHWAY
241
SELECTION
OF
OPTIMAL
CYANOBACTERIA
"
CHASSIS,
"
STRAIN
FOR
ETHANOL
PRODUCTION
242
8.3.1
8.3.2
8.3.3
8.3.4
8.4
SYNECHOCOCCUS
PCC
6803
AND
SYNECHOCOCCUS
PCC
7942
243
SYNECHOCOCCUS
PCC
7002
245
ANABAENA
PCC
7120
245
NONCONVENTIONAL
CYANOBACTERIA
SPECIES
246
METABOLIC
ENGINEERING
STRATEGIES
TOWARD
MORE
EFFICIENT
AND
STABLE
ETHANOL
PRODUCTION
246
8.4.1
ENHANCING
THE
CARBON
FLUX
VIA
OVEREXPRESSION
OF
CALVIN
CYCLE
ENZYMES
248
8.4.2
8.4.3
8.4.4
8.4.5
8.4.6
BLOCKING
PATHWAYS
THAT
ARE
COMPETITIVE
TO
ETHANOL
248
ARRESTING
BIOMASS
FORMATION
249
ENGINEERING
COFACTOR
SUPPLY
249
ENGINEERING
STRATEGIES
GUIDED
BY
IN
SILICO
SIMULATION
250
STABILIZING
ETHANOL
SYNTHESIS
CAPACITY
IN
CYANOBACTERIAL
CELL
FACTORIES
251
8.5
8.5.1
EXPLORING
THE
RESPONSE
IN
CYANOBACTERIA
TO
ETHANOL
253
RESPONSE
OF
CYANOBACTERIAL
CELLS
TOWARD
EXOGENOUS
ADDED
ETHANOL
254
8.5.2
RESPONSE
OF
CYANOBACTERIA
TO
ENDOGENOUS
SYNTHESIZED
ETHANOL
255
CONTENTS
8.6
METABOLIC
ENGINEERING
STRATEGIES
TO
FACILITATE
ROBUST
CULTIVATION
AGAINST
BIOCONTAMINANTS
256
8.6.1
ENGINEERING
CYANOBACTERIA
CELL
FACTORIES
TO
ADAPT
FOR
SELECTIVE
ENVIRONMENTAL
STRESSES
256
8.6.2
ENGINEERING
CYANOBACTERIA
CELL
FACTORIES
TO
UTILIZE
UNCOMMON
NUTRIENTS
258
8.7
CONCLUSIONS
AND
PERSPECTIVES
258
REFERENCES
259
9
ENGINEERING
CYANOBACTERIA
AS
HOST
ORGANISMS
FOR
PRODUCTION
OF
TERPENES
AND
TERPENOIDS
267
JOAO
S.
RODRIGUES
AND
PIA
LINDBERG
9.1
TERPENOIDS
AND
INDUSTRIAL
APPLICATIONS
267
9.2
TERPENOID
BIOSYNTHESIS
IN
CYANOBACTERIA
270
9.2.1
METHYLERYTHRITOL-4-PHOSPHATE
PATHWAY
270
9.2.2
FORMATION
OF
TERPENE
BACKBONES
272
9.3
NATURAL
OCCURRENCE
AND
PHYSIOLOGICAL
ROLES
OF
TERPENES
AND
TERPENOIDS
IN
CYANOBACTERIA
274
9.4
ENGINEERING
CYANOBACTERIA
FOR
TERPENOID
PRODUCTION
275
9.4.1
METABOLIC
ENGINEERING
277
9.4.1.1
TERPENE
SYNTHASES
277
9.4.1.2
INCREASING
SUPPLY
OF
TERPENE
BACKBONES
285
9.4.1.3
ENGINEERING
THE
NATIVE
MEP
PATHWAY
286
9.4.1.4
IMPLEMENTING
THE
MVA
PATHWAY
287
9.4.1.5
ENHANCING
PRECURSOR
SUPPLY
288
9.4.2
OPTIMIZING
GROWTH
CONDITIONS
FOR
PRODUCTION
289
9.4.3
PRODUCT
CAPTURE
AND
HARVESTING
291
9.5
SUMMARY
AND
OUTLOOK
292
ACKNOWLEDGMENTS
293
REFERENCES
293
10
CYANOBACTERIAL
BIOPOLYMERS
301
MORITZ
KOCH
AND
KARL
FORCHHAMMER
10.1
POLYHYDROXYBUTRYATE
301
10.1.1
INTRODUCTION
301
10.1.2
PHB
METABOLISM
IN
CYANOBACTERIA
302
10.1.3
INDUSTRIAL
APPLICATIONS
OF
PHB
305
10.1.3.1
PHYSICAL
PROPERTIES
OF
PHB
AND
ITS
DERIVATIVES
305
10.1.3.2
BIODEGRADABILITY
306
10.1.3.3
APPLICATION
OF
PHB
AS
A
PLASTIC
306
10.1.3.4
REACTOR
TYPES
306
10.1.3.5
PRODUCTION
PROCESS
307
10.1.3.6
DOWNSTREAM
PROCESSING
308
10.1.4
METABOLIC
ENGINEERING
OF
PHB
BIOSYNTHESIS
308
10.1.5
LIMITATIONS
AND
POTENTIAL
OF
PHB
PRODUCTION
IN
CYANOBACTERIA
310
CONTENTS
XI
10.2
CYANOPHYCIN
GRANULES
IN
CYANOBACTERIA
311
10.2.1
BIOLOGY
OF
CYANOPHYCIN
311
10.2.2
GENES
AND
ENZYMES
OF
CGP
METABOLISM
315
10.2.2.1
CYANOPHYCIN
SYNTHETASE
315
10.2.2.2
CYANOPHYCIN
DEGRADING ENZYMES
316
10.2.3
REGULATION
OF
CYANOPHYCIN
METABOLISM
317
10.2.4
CYANOPHYCIN
OVERPRODUCTION
AND
POTENTIAL
INDUSTRIAL
APPLICATIONS
318
ACKNOWLEDGEMENT
319
REFERENCES
319
11
BIOSYNTHESIS
OF
FATTY
ACID
DERIVATIVES
BY
CYANOBACTERIA:
FROM
BASICS
TO
BIOFUEL
PRODUCTION
331
AKIHITO
KAWAHARA
AND
YUKAKO
HIHARA
11.1
INTRODUCTION
331
11.2
OVERVIEW
OF
FATTY
ACID
METABOLISM
332
11.2.1
FATTY
ACID
BIOSYNTHESIS
332
11.2.2
FATTY
ACID
DEGRADATION
AND
TURNOVER
335
11.2.3
ACCUMULATION
OF
STORAGE
LIPIDS
336
11.3
BASIC
TECHNOLOGIES
FOR
PRODUCTION
OF
FREE
FATTY
ACIDS
337
11.3.1
PRODUCTION
OF
FREE
FATTY
ACIDS
IN
E.
COLI
337
11.3.2
PRODUCTION
OF
FREE
FATTY
ACIDS
IN
CYANOBACTERIA
338
11.4
ADVANCED
TECHNOLOGIES
FOR
ENHANCEMENT
OF
FREE
FATTY
ACID
PRODUCTION
339
11.4.1
ENHANCEMENT
OF
FATTY
ACID
BIOSYNTHESIS
339
11.4.2
ENHANCEMENT
OF
CARBON
FIXATION
ACTIVITY
345
11.4.3
ENGINEERING
OF
CARBON
FLOW:
MODIFICATION
OF
KEY
REGULATORY
FACTORS
345
11.4.4
ENGINEERING
OF
CARBON
FLOW:
DELETION
OF
COMPETITIVE
PATHWAYS
346
11.4.5
MITIGATION
OF
THE
TOXICITY
OF
FFAS
347
11.4.6
ENHANCEMENT
OF
FFA
SECRETION
348
11.4.7
INDUCTION
OF
CELL
LYSIS
349
11.4.8
RECOVERY
OF
PRODUCED
FFAS
FROM
MEDIUM
350
11.4.9
IDENTIFICATION
OF
CYANOBACTERIAL
STRAINS
SUITABLE
FOR
FFA
PRODUCTION
350
11.5
HYDROCARBON
PRODUCTION
IN
CYANOBACTERIA
351
11.6
ADVANCED
TECHNOLOGIES
FOR
ENHANCEMENT
OF
HYDROCARBON
PRODUCTION
353
11.6.1
ENHANCEMENT
OF
ALK(A/E)NE
BIOSYNTHESIS
353
11.6.2
IMPROVEMENT
OF
THE
PERFORMANCE
OF
ALKANE
BIOSYNTHETIC
ENZYMES
354
11.7
BASIC
TECHNOLOGIES
FOR
PRODUCTION
OF
FATTY
ALCOHOLS
355
11.8
ADVANCED
TECHNOLOGIES
FOR
ENHANCEMENT
OF
FATTY
ALCOHOL
PRODUCTION
355
11.9
BASIC
TECHNOLOGIES
FOR
PRODUCTION
OF
FATTY
ACID
ALKYL
ESTERS
356
11.10
PERSPECTIVES
357
REFERENCES
358
XII
CONTENTS
12
PRODUCT
EXPORT
IN
CYANOBACTERIA
369
CATIA
F.
GONCALVES,
STEEVE
LIMA,
AND
PAULO
OLIVEIRA
12.1
INTRODUCTION
369
12.2
SECRETION
MEDIATED
BY
MEMBRANE-EMBEDDED
SYSTEMS
373
12.2.1
PROTEINS
373
12.2.2
EXTRACELLULAR
POLYMERIC
SUBSTANCES
(EPS)
377
12.2.3
SOLUBLE
SUGARS
AND
ORGANIC
ACIDS
379
12.2.4
FATTY
ACIDS
381
12.2.5
ALCOHOLS
382
12.2.6
TERPENES
384
12.3
MV-MEDIATED
SECRETION
386
12.3.1
STRUCTURE
AND
BIOGENESIS
OF
BACTERIAL
MVS
386
12.3.1.1
CYANOBACTERIAL
MVS
388
12.3.2
MVS
AS
NOVEL
BIOTECHNOLOGICAL
TOOLS
389
12.4
CONCLUDING
REMARKS
391
ACKNOWLEDGMENTS
392
REFERENCES
392
PART
III
FRONTIERS
OF
CYANOBACTERIA
BIOTECHNOLOGY
407
13
HARNESSING
SOLAR-POWERED
OXIC
N
2
-FIXING
CYANOBACTERIA
FOR
THE
BIONITROGEN
ECONOMY
409
JAMES
YOUNG,
LIPING
GU,
WILLIAM
GIBBONS,
AND
RUANBAO
ZHOU
13.1
INTRODUCTION
409
13.2
PHYSIOLOGY
AND
IMPLICATIONS
OF
OXIC
NITROGEN
FIXATION
410
13.2.1
ECOLOGICAL
RANGE
411
13.2.2
BALANCING
PHOTOSYNTHESIS
AND
NITROGEN
FIXATION
412
13.2.3
ENERGETIC
DEMANDS
AND
HOW
THE
CELLS
ADAPT
412
13.2.4
IMPACTS
OF
CONTINUOUS
LIGHT
VS
DARK-LIGHT
CYCLES
416
13.3
MAJOR
BIOTECHNOLOGY
APPLICATIONS
FOR
DIAZOTROPHIC
CYANOBACTERIA
417
13.3.1
GENERAL
ECONOMIC
AND
ENVIRONMENTAL
CONSIDERATIONS
OF
DIAZOTROPHIC
CYANOBACTERIA
417
13.3.2
METABOLIC
ENGINEERING
OF
N
2
-FIXING
CYANOBACTERIA
FOR
CARBON
COMPOUND
PRODUCTION
420
13.3.2.1
DIRECT
PRODUCTION
OF
BIOFUELS
420
13.3.2.2
CYANOBACTERIA
AS
A
FERMENTABLE
SUBSTRATE
420
13.3.3
METABOLIC
ENGINEERING
OF
NITROGEN
FIXING
CYANOBACTERIA
FOR
NITROGEN-RICH
COMPOUND
PRODUCTION
422
13.3.3.1
AMMONIA
422
13.3.3.2
GUANIDINE
423
13.3.3.3
CYANOPHYCIN
423
13.3.3.4
AMINO
ACIDS
AND
PROTEINS
423
13.3.4
APPLICATION
OF
DIAZOTROPHIC
CYANOBACTERIA
IN
AGRICULTURE
425
CONTENTS
XIII
13.4
CONCLUSIONS
428
REFERENCES
428
14
TRAITS
OF
FAST-GROWING
CYANOBACTERIA
441
MEGHNA
SRIVASTAVA,
ELTON
P.
HUDSON,
AND
PRAMOD
P.
WANGIKAR
14.1
14.2
14.3
INTRODUCTION
441
WHY
IS
GROWTH
RATE
SIGNIFICANT?
442
AN
OVERVIEW
OF
FACTORS
AFFECTING
THE
GROWTH
RATES
OF
CYANOBACTERIA
446
14.3.1
14.3.2
14.3.3
14.3.4
14.3.4.1
14.3.4.2
14.3.4.3
14.3.4.4
14.3.5
14.4
14.4.1
14.4.2
14.4.3
14.4.4
14.5
LIGHT
INTENSITY
AND
QUALITY
448
MIXOTROPHIC
GROWTH
451
CIRCADIAN
RHYTHM
451
ADDITIONAL
FACTORS
RELATING
TO
GROWTH
RATES
IN
CYANOBACTERIA
452
CELL
MORPHOLOGY
453
GENOME
SIZE
453
SALTWATER
TOLERANCE
454
NUTRIENT
SUPPLEMENTATION
454
CARBON
STORAGE
455
OVERVIEW
OF
THE
FAST-GROWING
MODEL
CYANOBACTERIA
455
SYNECHOCOCCUS
ELONGATUS
UTEX
2973
455
SYNECHOCOCCUS
ELONGATUS
PCC
11801
456
SYNECHOCOCCUS
SP.
PCC
11901
456
SYNECHOCOCCUS
SP.
PCC
7002
457
RELATIONSHIP
BETWEEN
LIGHT
USAGE
AND
GROWTH
RATE
IN
MODEL
STRAINS
458
14.5.1
14.5.2
14.6
14.7
CASE
STUDY:
THE
PMGA
MUTANT
OF
SYNECHOCYSTIS
458
CASE
STUDY:
THE
S.
ELONGATUS
7942
AND
S.
ELONGATUS
2973
STRAINS
460
MOLECULAR
DETERMINANTS
OF
FAST
GROWTH
OF
S',
ELONGATUS
UTEX
2973
460
CARBON
FLUXES
IN
FAST-GROWING
STRAINS
DETERMINED
USING
METABOLIC
FLUX
ANALYSIS
463
14.8
14.8.1
14.8.2
14.8.3
14.9
ENGINEERING
CYANOBACTERIA
FOR FAST
GROWTH
465
CALVIN
CYCLE
ENZYMES
465
PEP
CARBOXYLASE
466
CARBON
AND
LIGHT
UPTAKE
PROTEINS
467
CONCLUSION
468
REFERENCES
468
15
CYANOBACTERIAL
BIOFILMS
IN
NATURAL
AND
SYNTHETIC
ENVIRONMENTS
477
CHRISTIAN
DAVID,
ROHAN
KARANDE,
AND
KATJA
BUHLER
15.1
15.2
15.3
15.4
15.5
MOTIVATION
477
INTRODUCTION
TO
BIOFILMS:
BIOLOGY
AND
APPLICATIONS
478
CYANOBACTERIA
IN
NATURAL
BIOFILMS
AND
MICROBIAL
MATS
483
INTRODUCTION
TO
(PHOTO-)BIOTECHNOLOGY
484
BENEFITS
OF
MICROSCALE
SYSTEMS
FOR
(PHOTO-)BIOFILM
CULTIVATION
487
XIV
CONTENTS
INDEX
531
15.6
15.7
15.8
15.8.1
15.8.2
15.9
OXYGEN
ACCUMULATION
AND
ITS
IMPACTS
488
RESOURCE
MANAGEMENT
IN
BIOFILMS
491
APPLICATIONS
OF
PHOTOSYNTHETIC
BIOFILMS
493
BIOFILMS
ENABLE
HIGH
CELL
DENSITIES
497
BIOFILMS
ENABLE
CONTINUOUS
PRODUCTION
498
OUTLOOK
499
REFERENCES
499
16
GROWTH
OF
PHOTOSYNTHETIC
MICROORGANISMS
IN
DIFFERENT
PHOTOBIOREACTORS
OPERATED
OUTDOORS
505
ELEFTHERIOS
TOULOUPAKIS
AND
PIETRO
CARLOZZI
16.1
16.1.1
16.1.2
16.1.3
16.2
BACKGROUND
505
PHOTOBIOLOGICAL
HYDROGEN
PRODUCTION
506
POLYHYDROXYALKANOATE
PRODUCTION
BY
PHOTOSYNTHETIC
MICROBES
508
PHOTOBIOREACTORS
509
CASE
STUDIES
OF
OUTDOOR
CULTIVATIONS
OF
PHOTOSYNTHETIC
MICROORGANISMS
513
16.2.1
OUTDOOR
CULTURES
OF
PURPLE
NON-SULFUR
BACTERIA
FOR
H
2
AND
PHB
PRODUCTION
513
16.2.2
16.3
OUTDOOR
CULTURES
OF
CYANOBACTERIA
516
CONCLUSION
517
ACKNOWLEDGMENTS
519
REFERENCES
519 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Hudson, Paul |
author2_role | edt |
author2_variant | p h ph |
author_GND | (DE-588)1235179974 |
author_facet | Hudson, Paul |
building | Verbundindex |
bvnumber | BV048488850 |
classification_rvk | WF 9745 |
ctrlnum | (OCoLC)1255705675 (DE-599)DNB1219753068 |
dewey-full | 660.62 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 660 - Chemical engineering |
dewey-raw | 660.62 |
dewey-search | 660.62 |
dewey-sort | 3660.62 |
dewey-tens | 660 - Chemical engineering |
discipline | Chemie / Pharmazie Biologie |
discipline_str_mv | Chemie / Pharmazie Biologie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02885nam a2200709 cb4500</leader><controlfield tag="001">BV048488850</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230123 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220927s2021 gw a||| |||| 00||| eng d</controlfield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1219753068</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527347148</subfield><subfield code="c">Festeinband</subfield><subfield code="9">978-3-527-34714-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527347143</subfield><subfield code="9">3-527-34714-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1255705675</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1219753068</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-634</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660.62</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">WF 9745</subfield><subfield code="0">(DE-625)148465:13430</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">660</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cyanobacteria biotechnology</subfield><subfield code="c">edited by Paul Hudson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim, Germany</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xviii, 542 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advanced biotechnology</subfield><subfield code="v">volume 12</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bioverfahrenstechnik</subfield><subfield code="0">(DE-588)4307166-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cyanobakterien</subfield><subfield code="0">(DE-588)4136726-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biochemical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biochemische Verfahrenstechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biotechnologie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biotechnologie i. d. Biowissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Biowissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemical Engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemische Verfahrenstechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cyanobakterien</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Life Sciences</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Microbiology & Virology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mikrobiologie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Mikrobiologie u. Virologie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CG20: Biochemische Verfahrenstechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">LS35: Biotechnologie i. d. Biowissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">LS50: Mikrobiologie u. Virologie</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Cyanobakterien</subfield><subfield code="0">(DE-588)4136726-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Bioverfahrenstechnik</subfield><subfield code="0">(DE-588)4307166-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hudson, Paul</subfield><subfield code="0">(DE-588)1235179974</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-82492-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-82491-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, obook</subfield><subfield code="z">978-3-527-82490-8</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advanced biotechnology</subfield><subfield code="v">volume 12</subfield><subfield code="w">(DE-604)BV043302234</subfield><subfield code="9">12</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34714-8/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1219753068/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033866363&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033866363</subfield></datafield><datafield tag="883" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">dnb</subfield><subfield code="d">20210728</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#dnb</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV048488850 |
illustrated | Illustrated |
index_date | 2024-07-03T20:41:06Z |
indexdate | 2024-07-10T09:39:30Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527347148 3527347143 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033866363 |
oclc_num | 1255705675 |
open_access_boolean | |
owner | DE-634 DE-11 |
owner_facet | DE-634 DE-11 |
physical | xviii, 542 Seiten Illustrationen, Diagramme |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | Wiley-VCH |
record_format | marc |
series | Advanced biotechnology |
series2 | Advanced biotechnology |
spelling | Cyanobacteria biotechnology edited by Paul Hudson Weinheim, Germany Wiley-VCH [2021] xviii, 542 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Advanced biotechnology volume 12 Bioverfahrenstechnik (DE-588)4307166-1 gnd rswk-swf Cyanobakterien (DE-588)4136726-1 gnd rswk-swf Biochemical Engineering Biochemische Verfahrenstechnik Biotechnologie Biotechnologie i. d. Biowissenschaften Biotechnology Biowissenschaften Chemical Engineering Chemische Verfahrenstechnik Cyanobakterien Life Sciences Microbiology & Virology Mikrobiologie Mikrobiologie u. Virologie CG20: Biochemische Verfahrenstechnik LS35: Biotechnologie i. d. Biowissenschaften LS50: Mikrobiologie u. Virologie (DE-588)4143413-4 Aufsatzsammlung gnd-content Cyanobakterien (DE-588)4136726-1 s Bioverfahrenstechnik (DE-588)4307166-1 s DE-604 Hudson, Paul (DE-588)1235179974 edt Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-82492-2 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-82491-5 Erscheint auch als Online-Ausgabe, obook 978-3-527-82490-8 Advanced biotechnology volume 12 (DE-604)BV043302234 12 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34714-8/ B:DE-101 application/pdf https://d-nb.info/1219753068/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033866363&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p dnb 20210728 DE-101 https://d-nb.info/provenance/plan#dnb |
spellingShingle | Cyanobacteria biotechnology Advanced biotechnology Bioverfahrenstechnik (DE-588)4307166-1 gnd Cyanobakterien (DE-588)4136726-1 gnd |
subject_GND | (DE-588)4307166-1 (DE-588)4136726-1 (DE-588)4143413-4 |
title | Cyanobacteria biotechnology |
title_auth | Cyanobacteria biotechnology |
title_exact_search | Cyanobacteria biotechnology |
title_exact_search_txtP | Cyanobacteria biotechnology |
title_full | Cyanobacteria biotechnology edited by Paul Hudson |
title_fullStr | Cyanobacteria biotechnology edited by Paul Hudson |
title_full_unstemmed | Cyanobacteria biotechnology edited by Paul Hudson |
title_short | Cyanobacteria biotechnology |
title_sort | cyanobacteria biotechnology |
topic | Bioverfahrenstechnik (DE-588)4307166-1 gnd Cyanobakterien (DE-588)4136726-1 gnd |
topic_facet | Bioverfahrenstechnik Cyanobakterien Aufsatzsammlung |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34714-8/ https://d-nb.info/1219753068/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033866363&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV043302234 |
work_keys_str_mv | AT hudsonpaul cyanobacteriabiotechnology AT wileyvch cyanobacteriabiotechnology |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis