Smart energy and electric power systems: current trends and new intelligent perspectives
Smart Energy and Electric Power Systems: Current Trends and New Intelligent Perspectives reviews key applications of intelligent algorithms and machine learning techniques to increasingly complex and data-driven power systems with distributed energy resources to enable evidence-driven decision-makin...
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Amsterdam, Netherlands
Elsevier
[2023]
|
Schlagworte: | |
Zusammenfassung: | Smart Energy and Electric Power Systems: Current Trends and New Intelligent Perspectives reviews key applications of intelligent algorithms and machine learning techniques to increasingly complex and data-driven power systems with distributed energy resources to enable evidence-driven decision-making and mitigate catastrophic power shortages. The book reviews foundations towards the integration of machine learning and smart power systems before addressing key challenges and issues. The work then explores AI- and ML-informed techniques to rebalancing of supply and demand. Methods discussed include distributed energy resources and prosumer markets, electricity demand prediction, component fault detection, and load balancing. Security solutions are introduced, along with potential solutions to cyberattacks, security data detection and critical loads in power systems. The work closes with a lengthy discussion, informed by case studies, on integrating AI and ML into the modern energy sector.- Helps improve the prediction capability of AI algorithms to make evidence-based decisions in the smart supply of electricity, including load shedding- Focuses on how to integrate AI and ML into the energy sector in the real-world, with many chapters accompanied by case studies- Addresses a number of proven AI and ML- informed techniques in rebalancing supply and demand |
Beschreibung: | 1. Introduction: Artificial intelligence and Smart Power Systems; 2. Integrated Architecture of Machine Learning and Smart Power System; 3. Challenges and issues in Power Systems; 4. Load shedding and related techniques to solve the power crisis; 5. ML in distributed energy resources and prosumers market; 6. ML-based electricity demand prediction; 7. Applying ML to determine the power outage; 8. Predictive and Prescriptive analytics for component fault detection; 9. Balancing demand and supply of electricity with machine learning; 10. Preventive care of grid hardware with anomaly detection; 11. AI-based Smart feeder monitoring system; 12. Algorithms for buss loss and reliability indices calculations; 13. ML-based security solutions to protect smart power systems; 14. Cyber-attacks ,security data detection, and critical loads in the power systems; 15. Integration of AI/ML into the energy sector: Case Studies |
Beschreibung: | xvii, 207 Seiten Illustrationen 229 mm |
ISBN: | 9780323916646 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048467441 | ||
003 | DE-604 | ||
005 | 20231121 | ||
007 | t | ||
008 | 220913s2023 a||| |||| 00||| eng d | ||
020 | |a 9780323916646 |c pbk |9 978-0-323-91664-6 | ||
024 | 3 | |a 9780323916646 | |
035 | |a (OCoLC)1350774640 | ||
035 | |a (DE-599)BVBBV048467441 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-29T |a DE-898 |a DE-355 | ||
084 | |a ZN 8510 |0 (DE-625)157629: |2 rvk | ||
245 | 1 | 0 | |a Smart energy and electric power systems |b current trends and new intelligent perspectives |c edited by Sanjeevikkumar Padmanaban, Jens Bo Holm-Nielsen, Kayal Padmanandam, Rajesh Kumar Dhanaraj, Balamurugan Balusamy |
264 | 1 | |a Amsterdam, Netherlands |b Elsevier |c [2023] | |
300 | |a xvii, 207 Seiten |b Illustrationen |c 229 mm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a 1. Introduction: Artificial intelligence and Smart Power Systems; 2. Integrated Architecture of Machine Learning and Smart Power System; 3. Challenges and issues in Power Systems; 4. Load shedding and related techniques to solve the power crisis; 5. ML in distributed energy resources and prosumers market; 6. ML-based electricity demand prediction; 7. Applying ML to determine the power outage; 8. Predictive and Prescriptive analytics for component fault detection; 9. Balancing demand and supply of electricity with machine learning; 10. Preventive care of grid hardware with anomaly detection; 11. AI-based Smart feeder monitoring system; 12. Algorithms for buss loss and reliability indices calculations; 13. ML-based security solutions to protect smart power systems; 14. Cyber-attacks ,security data detection, and critical loads in the power systems; 15. Integration of AI/ML into the energy sector: Case Studies | ||
520 | |a Smart Energy and Electric Power Systems: Current Trends and New Intelligent Perspectives reviews key applications of intelligent algorithms and machine learning techniques to increasingly complex and data-driven power systems with distributed energy resources to enable evidence-driven decision-making and mitigate catastrophic power shortages. The book reviews foundations towards the integration of machine learning and smart power systems before addressing key challenges and issues. The work then explores AI- and ML-informed techniques to rebalancing of supply and demand. Methods discussed include distributed energy resources and prosumer markets, electricity demand prediction, component fault detection, and load balancing. Security solutions are introduced, along with potential solutions to cyberattacks, security data detection and critical loads in power systems. The work closes with a lengthy discussion, informed by case studies, on integrating AI and ML into the modern energy sector.- Helps improve the prediction capability of AI algorithms to make evidence-based decisions in the smart supply of electricity, including load shedding- Focuses on how to integrate AI and ML into the energy sector in the real-world, with many chapters accompanied by case studies- Addresses a number of proven AI and ML- informed techniques in rebalancing supply and demand | ||
650 | 0 | 7 | |a Intelligentes Stromnetz |0 (DE-588)7708028-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Smart Energy |0 (DE-588)1262853362 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elektrizitätsversorgungsnetz |0 (DE-588)4121178-9 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Intelligentes Stromnetz |0 (DE-588)7708028-2 |D s |
689 | 0 | 1 | |a Smart Energy |0 (DE-588)1262853362 |D s |
689 | 0 | 2 | |a Elektrizitätsversorgungsnetz |0 (DE-588)4121178-9 |D s |
689 | 0 | 3 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Sanjeevikumar, Padmanaban |d 1978- |0 (DE-588)1220850691 |4 edt | |
700 | 1 | |a Holm-Nielsen, Jens Bo |0 (DE-588)1157033725 |4 edt | |
999 | |a oai:aleph.bib-bvb.de:BVB01-033845317 |
Datensatz im Suchindex
_version_ | 1804184413715562496 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Sanjeevikumar, Padmanaban 1978- Holm-Nielsen, Jens Bo |
author2_role | edt edt |
author2_variant | p s ps j b h n jbh jbhn |
author_GND | (DE-588)1220850691 (DE-588)1157033725 |
author_facet | Sanjeevikumar, Padmanaban 1978- Holm-Nielsen, Jens Bo |
building | Verbundindex |
bvnumber | BV048467441 |
classification_rvk | ZN 8510 |
ctrlnum | (OCoLC)1350774640 (DE-599)BVBBV048467441 |
discipline | Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04035nam a2200433 c 4500</leader><controlfield tag="001">BV048467441</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20231121 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220913s2023 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780323916646</subfield><subfield code="c">pbk</subfield><subfield code="9">978-0-323-91664-6</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9780323916646</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1350774640</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048467441</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-29T</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 8510</subfield><subfield code="0">(DE-625)157629:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Smart energy and electric power systems</subfield><subfield code="b">current trends and new intelligent perspectives</subfield><subfield code="c">edited by Sanjeevikkumar Padmanaban, Jens Bo Holm-Nielsen, Kayal Padmanandam, Rajesh Kumar Dhanaraj, Balamurugan Balusamy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam, Netherlands</subfield><subfield code="b">Elsevier</subfield><subfield code="c">[2023]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xvii, 207 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">229 mm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction: Artificial intelligence and Smart Power Systems; 2. Integrated Architecture of Machine Learning and Smart Power System; 3. Challenges and issues in Power Systems; 4. Load shedding and related techniques to solve the power crisis; 5. ML in distributed energy resources and prosumers market; 6. ML-based electricity demand prediction; 7. Applying ML to determine the power outage; 8. Predictive and Prescriptive analytics for component fault detection; 9. Balancing demand and supply of electricity with machine learning; 10. Preventive care of grid hardware with anomaly detection; 11. AI-based Smart feeder monitoring system; 12. Algorithms for buss loss and reliability indices calculations; 13. ML-based security solutions to protect smart power systems; 14. Cyber-attacks ,security data detection, and critical loads in the power systems; 15. Integration of AI/ML into the energy sector: Case Studies</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Smart Energy and Electric Power Systems: Current Trends and New Intelligent Perspectives reviews key applications of intelligent algorithms and machine learning techniques to increasingly complex and data-driven power systems with distributed energy resources to enable evidence-driven decision-making and mitigate catastrophic power shortages. The book reviews foundations towards the integration of machine learning and smart power systems before addressing key challenges and issues. The work then explores AI- and ML-informed techniques to rebalancing of supply and demand. Methods discussed include distributed energy resources and prosumer markets, electricity demand prediction, component fault detection, and load balancing. Security solutions are introduced, along with potential solutions to cyberattacks, security data detection and critical loads in power systems. The work closes with a lengthy discussion, informed by case studies, on integrating AI and ML into the modern energy sector.- Helps improve the prediction capability of AI algorithms to make evidence-based decisions in the smart supply of electricity, including load shedding- Focuses on how to integrate AI and ML into the energy sector in the real-world, with many chapters accompanied by case studies- Addresses a number of proven AI and ML- informed techniques in rebalancing supply and demand</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Intelligentes Stromnetz</subfield><subfield code="0">(DE-588)7708028-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Smart Energy</subfield><subfield code="0">(DE-588)1262853362</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elektrizitätsversorgungsnetz</subfield><subfield code="0">(DE-588)4121178-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Intelligentes Stromnetz</subfield><subfield code="0">(DE-588)7708028-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Smart Energy</subfield><subfield code="0">(DE-588)1262853362</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Elektrizitätsversorgungsnetz</subfield><subfield code="0">(DE-588)4121178-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sanjeevikumar, Padmanaban</subfield><subfield code="d">1978-</subfield><subfield code="0">(DE-588)1220850691</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Holm-Nielsen, Jens Bo</subfield><subfield code="0">(DE-588)1157033725</subfield><subfield code="4">edt</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033845317</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV048467441 |
illustrated | Illustrated |
index_date | 2024-07-03T20:35:46Z |
indexdate | 2024-07-10T09:38:57Z |
institution | BVB |
isbn | 9780323916646 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033845317 |
oclc_num | 1350774640 |
open_access_boolean | |
owner | DE-29T DE-898 DE-BY-UBR DE-355 DE-BY-UBR |
owner_facet | DE-29T DE-898 DE-BY-UBR DE-355 DE-BY-UBR |
physical | xvii, 207 Seiten Illustrationen 229 mm |
publishDate | 2023 |
publishDateSearch | 2023 |
publishDateSort | 2023 |
publisher | Elsevier |
record_format | marc |
spelling | Smart energy and electric power systems current trends and new intelligent perspectives edited by Sanjeevikkumar Padmanaban, Jens Bo Holm-Nielsen, Kayal Padmanandam, Rajesh Kumar Dhanaraj, Balamurugan Balusamy Amsterdam, Netherlands Elsevier [2023] xvii, 207 Seiten Illustrationen 229 mm txt rdacontent n rdamedia nc rdacarrier 1. Introduction: Artificial intelligence and Smart Power Systems; 2. Integrated Architecture of Machine Learning and Smart Power System; 3. Challenges and issues in Power Systems; 4. Load shedding and related techniques to solve the power crisis; 5. ML in distributed energy resources and prosumers market; 6. ML-based electricity demand prediction; 7. Applying ML to determine the power outage; 8. Predictive and Prescriptive analytics for component fault detection; 9. Balancing demand and supply of electricity with machine learning; 10. Preventive care of grid hardware with anomaly detection; 11. AI-based Smart feeder monitoring system; 12. Algorithms for buss loss and reliability indices calculations; 13. ML-based security solutions to protect smart power systems; 14. Cyber-attacks ,security data detection, and critical loads in the power systems; 15. Integration of AI/ML into the energy sector: Case Studies Smart Energy and Electric Power Systems: Current Trends and New Intelligent Perspectives reviews key applications of intelligent algorithms and machine learning techniques to increasingly complex and data-driven power systems with distributed energy resources to enable evidence-driven decision-making and mitigate catastrophic power shortages. The book reviews foundations towards the integration of machine learning and smart power systems before addressing key challenges and issues. The work then explores AI- and ML-informed techniques to rebalancing of supply and demand. Methods discussed include distributed energy resources and prosumer markets, electricity demand prediction, component fault detection, and load balancing. Security solutions are introduced, along with potential solutions to cyberattacks, security data detection and critical loads in power systems. The work closes with a lengthy discussion, informed by case studies, on integrating AI and ML into the modern energy sector.- Helps improve the prediction capability of AI algorithms to make evidence-based decisions in the smart supply of electricity, including load shedding- Focuses on how to integrate AI and ML into the energy sector in the real-world, with many chapters accompanied by case studies- Addresses a number of proven AI and ML- informed techniques in rebalancing supply and demand Intelligentes Stromnetz (DE-588)7708028-2 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Smart Energy (DE-588)1262853362 gnd rswk-swf Elektrizitätsversorgungsnetz (DE-588)4121178-9 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Intelligentes Stromnetz (DE-588)7708028-2 s Smart Energy (DE-588)1262853362 s Elektrizitätsversorgungsnetz (DE-588)4121178-9 s Künstliche Intelligenz (DE-588)4033447-8 s DE-604 Sanjeevikumar, Padmanaban 1978- (DE-588)1220850691 edt Holm-Nielsen, Jens Bo (DE-588)1157033725 edt |
spellingShingle | Smart energy and electric power systems current trends and new intelligent perspectives Intelligentes Stromnetz (DE-588)7708028-2 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Smart Energy (DE-588)1262853362 gnd Elektrizitätsversorgungsnetz (DE-588)4121178-9 gnd |
subject_GND | (DE-588)7708028-2 (DE-588)4033447-8 (DE-588)1262853362 (DE-588)4121178-9 (DE-588)4143413-4 |
title | Smart energy and electric power systems current trends and new intelligent perspectives |
title_auth | Smart energy and electric power systems current trends and new intelligent perspectives |
title_exact_search | Smart energy and electric power systems current trends and new intelligent perspectives |
title_exact_search_txtP | Smart energy and electric power systems current trends and new intelligent perspectives |
title_full | Smart energy and electric power systems current trends and new intelligent perspectives edited by Sanjeevikkumar Padmanaban, Jens Bo Holm-Nielsen, Kayal Padmanandam, Rajesh Kumar Dhanaraj, Balamurugan Balusamy |
title_fullStr | Smart energy and electric power systems current trends and new intelligent perspectives edited by Sanjeevikkumar Padmanaban, Jens Bo Holm-Nielsen, Kayal Padmanandam, Rajesh Kumar Dhanaraj, Balamurugan Balusamy |
title_full_unstemmed | Smart energy and electric power systems current trends and new intelligent perspectives edited by Sanjeevikkumar Padmanaban, Jens Bo Holm-Nielsen, Kayal Padmanandam, Rajesh Kumar Dhanaraj, Balamurugan Balusamy |
title_short | Smart energy and electric power systems |
title_sort | smart energy and electric power systems current trends and new intelligent perspectives |
title_sub | current trends and new intelligent perspectives |
topic | Intelligentes Stromnetz (DE-588)7708028-2 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Smart Energy (DE-588)1262853362 gnd Elektrizitätsversorgungsnetz (DE-588)4121178-9 gnd |
topic_facet | Intelligentes Stromnetz Künstliche Intelligenz Smart Energy Elektrizitätsversorgungsnetz Aufsatzsammlung |
work_keys_str_mv | AT sanjeevikumarpadmanaban smartenergyandelectricpowersystemscurrenttrendsandnewintelligentperspectives AT holmnielsenjensbo smartenergyandelectricpowersystemscurrenttrendsandnewintelligentperspectives |