Reliability of vibration-based nondestructive inspection methods for damage detection in structural engineering:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Ilmtal-Weinstraße
Bauhaus Universitätsverlag
[2019]
|
Schriftenreihe: | Schriftenreihe des DFG-Graduiertenkollegs 1462 Modellqualitäten
Heft 20 |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | xxxii, 295 Seiten Illustrationen, Diagramme 30 cm |
ISBN: | 9783957732804 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV048467101 | ||
003 | DE-604 | ||
005 | 20230811 | ||
007 | t | ||
008 | 220913s2019 gw a||| m||| 00||| eng d | ||
015 | |a 21,A35 |2 dnb | ||
015 | |a 21,H09 |2 dnb | ||
016 | 7 | |a 1200556968 |2 DE-101 | |
020 | |a 9783957732804 |c Broschur |9 978-3-95773-280-4 | ||
035 | |a (OCoLC)1165398788 | ||
035 | |a (DE-599)DNB1200556968 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-83 | ||
084 | |a ZM 3700 |0 (DE-625)157028: |2 rvk | ||
084 | |a 624 |2 23sdnb | ||
100 | 1 | |a Deeb, Maher |d 1984- |e Verfasser |0 (DE-588)1205762280 |4 aut | |
245 | 1 | 0 | |a Reliability of vibration-based nondestructive inspection methods for damage detection in structural engineering |c vorgelegt von Maher Deeb |
264 | 1 | |a Ilmtal-Weinstraße |b Bauhaus Universitätsverlag |c [2019] | |
300 | |a xxxii, 295 Seiten |b Illustrationen, Diagramme |c 30 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Schriftenreihe des DFG-Graduiertenkollegs 1462 Modellqualitäten |v Heft 20 | |
502 | |b Dissertation |c Bauhaus-Universität Weimar |d 2018 | ||
650 | 0 | 7 | |a Schadenfrüherkennung |0 (DE-588)4179292-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modalanalyse |0 (DE-588)4226177-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zerstörungsfreie Werkstoffprüfung |0 (DE-588)4067689-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bauwerk |0 (DE-588)4112681-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Technische Überwachung |0 (DE-588)4059237-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tragwerk |0 (DE-588)4060592-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zuverlässigkeit |0 (DE-588)4059245-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastisches Modell |0 (DE-588)4057633-4 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Tragwerk |0 (DE-588)4060592-9 |D s |
689 | 0 | 1 | |a Schadenfrüherkennung |0 (DE-588)4179292-0 |D s |
689 | 0 | 2 | |a Zuverlässigkeit |0 (DE-588)4059245-5 |D s |
689 | 0 | 3 | |a Zerstörungsfreie Werkstoffprüfung |0 (DE-588)4067689-4 |D s |
689 | 0 | 4 | |a Modalanalyse |0 (DE-588)4226177-6 |D s |
689 | 0 | 5 | |a Stochastisches Modell |0 (DE-588)4057633-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Bauwerk |0 (DE-588)4112681-6 |D s |
689 | 1 | 1 | |a Technische Überwachung |0 (DE-588)4059237-6 |D s |
689 | 1 | |5 DE-604 | |
830 | 0 | |a Schriftenreihe des DFG-Graduiertenkollegs 1462 Modellqualitäten |v Heft 20 |w (DE-604)BV039163733 |9 20 | |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033844980&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033844980 |
Datensatz im Suchindex
_version_ | 1804184413138845696 |
---|---|
adam_text | CONTENT
DIE
EHRENWORTLICHE
ERKLARUNG
II
ACKNOWLEDGMENTS
III
ZUSAMMENFASSUNG
V
ABSTRACT
IX
CONTENT
XVII
LIST
OF
SYMBOLS
XVIII
LIST
OF
FIGURES
XXIX
LIST
OF
TABLES
1
1
INTRODUCTION
2
1.1
MOTIVATION
.....................................................................................................................
2
1.2
METHODOLOGY
...............................................................................................................
4
1.3
OUTLINE
...........................................................................................................................
6
2
STATE
OF
THE
ART
8
2.1
DAMAGE
.........................................................................................................................
8
2.1.1
DAMAGE
AND
DAMAGE
IDENTIFICATION
...............................................................
8
2.1.2
TYPES
OF
DAMAGE
............................................................................................
9
2.1.3
DAMAGE
MODELING
............................................................................................
11
2.1.4
DAMAGE
DETECTION
INSPECTION
METHODS
.......................................................
18
XIII
CONTENT
XIV
2.2
THE
RELIABILITY
OF
AN
INSPECTION
METHOD
....................................................................
26
2.2.1
RELIABILITY
.........................................................................................................
26
2.2.2
DESIGN
OF
EXPERIMENTS
...................................................................................
26
2.2.3
PROBABILITY
OF
DETECTION
................................................................................
29
2.3
MODEL
QUALITY
...............................................................................................................
30
2.3.1
MODELS
...............................................................................................................
30
2.3.2
UNCERTAINTY
......................................................................................................
31
2.3.3
MODEL
QUALITY
ASSESSMENT
METHODS
..............................................................
33
2.4
CONCLUSION
......................................................................................................................
35
3
STRATEGY
FOR
RELIABILITY
ASSESSMENT
37
3.1
OVERVIEW
.........................................................................................................................
37
3.2
PROBLEM
DEFINITION
......................................................................................................
39
3.3
DESIGN
OF
EXPERIMENT
...................................................................................................
42
3.4
SENSITIVITY
ANALYSIS
......................................................................................................
50
3.4.1
DOE
BASED
ON
NUMERICAL
MODEL
QUALITY
AND
SENSITIVITY
ANALYSIS
............
51
3.4.2
META-MODELING
................................................................................................
54
3.4.3
CHOOSING
THE
TERMS
OF
A
META-MODEL
............................................................
55
3.4.4
META-MODEL
FOR
SENSITIVITY
ANALYSIS
..............................................................
57
3.5
MODEL
UPDATING
............................................................................................................
62
3.5.1
BAYESIAN
INFERENCE
..........................................................................................
63
3.5.2
PRIOR
DENSITY
FUNCTION
....................................................................................
64
3.5.3
LIKELIHOOD
FUNCTION
..........................................................................................
65
3.5.4
POSTERIOR
DENSITY
FUNCTION
.............................................................................
69
3.6
THE
RELIABILITY
OF
AN
INSPECTION
METHOD
....................................................................
74
3.6.1
DAMAGE
INDICATOR
.............................................................................................
75
3.6.2
PROBABILITY
OF
DAMAGE
DETECTION
....................................................................
75
3.7
MODEL
QUALITY
AND
INSPECTION
METHOD
RELIABILITY
.....................................................
80
4
NUMERICAL
STUDY:
THREE
DEGREES
OF
FREEDOM
FRAME
LIKE
STRUCTURE
82
CONTENT
XV
4.1
INTRODUCTION
...................................................................................................................
82
4.2
PROBLEM
DEFINITION
......................................................................................................
82
4.3
DESIGN
OF
EXPERIMENTS
................................................................................................
84
4.4
SENSITIVITY
ANALYSIS
RESULTS
..........................................................................................
86
4.5
MODEL
UPDATING
RESULTS
................................................................................................
92
4.6
RELIABILITY
OF
THE
INSPECTION
METHOD
..........................................................................
92
4.6.1
DAMAGE
INDICATOR
.............................................................................................
92
4.6.2
DAMAGE
LOCATION
.............................................................................................
94
4.6.3
PROBABILITY
OF
DETECTION
CURVES
.......................................................................
95
5
EXPERIMENTAL
STUDY
98
5.1
STEEL
FRAME
STRUCTURE
...................................................................................................
98
5.1.1
INTRODUCTION
......................................................................................................
98
5.1.2
PROBLEM
DEFINITION
AND
EXPERIMENTAL
TEST
SETUP
..........................................
98
5.1.3
MODAL
PARAMETERS
...............................................................................................
103
5.1.4
RESULTS
UNDER
HARMONIC
EXCITATIONS
................................................................
105
5.1.5
NUMERICAL
STUDY
...............................................................................................
114
5.1.6
DESIGN
OF
EXPERIMENTS
......................................................................................
130
5.1.7
SENSITIVITY
ANALYSIS
............................................................................................
131
5.1.8
MODEL
UPDATING
..................................................................................................
132
5.1.9
ASSESSMENT
OF
THE
INSPECTION
METHOD
.............................................................
132
5.1.10
CONCLUSION
...........................................................................................................
139
5.2
CANTILEVER
........................................................................................................................
140
5.2.1
INTRODUCTION
........................................................................................................
140
5.2.2
PROBLEM
DEFINITION
AND
TEST
SETUP
.....................................................................
140
5.2.3
TEST
RESULTS
........................................................................................................
143
5.2.4
NUMERICAL
MODEL
...............................................................................................
155
5.2.5
DESIGN
OF
EXPERIMENTS
......................................................................................
169
5.2.6
SENSITIVITY
ANALYSIS
............................................................................................
171
5.2.7
MODEL
UPDATING
..................................................................................................
171
CONTENT
XVI
5.2.8
ASSESSMENT
OF
THE
INSPECTION
METHOD
...............................................................
173
5.2.9
CONCLUSION
............................................................................................................
177
6
REFERENCE
OBJECT:
POLE
178
6.1
INTRODUCTION
.....................................................................................................................
178
6.2
PROBLEM
DEFINITION
AND
TEST
SETUP
................................................................................
178
6.3
TEST
RESULTS
.....................................................................................................................
182
6.4
NUMERICAL
MODEL
............................................................................................................
183
6.5
DESIGN
OF
EXPERIMENTS
..................................................................................................
190
6.6
SENSITIVITY
ANALYSIS
........................................................................................................
201
6.7
MODEL
UPDATING
...............................................................................................................
203
6.8
ASSESSMENT
OF
THE
INSPECTION
METHOD
..........................................................................
205
6.9
CONCLUSION
........................................................................................................................
214
7
DISCUSSION
215
7.1
INTRODUCTION
.....................................................................................................................
215
7.2
QUALITY
ASSESSMENT:
LIMITATION
AND
IMPROVEMENT
.....................................................
216
7.2.1
ASSESSMENT
PROCEDURE
..................................................................................
216
7.2.2
ASSESSMENT
RESULTS
............................................................................................
216
7.3
CONCLUSION
........................................................................................................................
222
8
CONCLUSION
AND
OUTLOOK
225
REFERENCES
240
A
MATLAB
IMPLEMENTATIONS
241
A.
L
BAYESIAN
MODEL
UPDATING
..............................................................................................
241
A.
2
SAMPLING
FROM
A
UNIFORM
DISTRIBUTION
FUNCTION
...........................................................
246
A.
3
SAMPLING
FROM
ANY
DISTRIBUTION
FUNCTION
USING
THE
INVERSE
METHOD
........................
247
A.
4
PROBABILITY
OF
DETECTION
.................................................................................................
247
A.
5
DEVELOPING
META-MODELS
AND
SELECTING
THEIR
TERMS
...................................................
249
CONTENT
XVII
B
FINITE
ELEMENT
MODELS
(LS
DYNA
REDUCED
INPUT)
254
B.
L
STEEL
FRAME
STRUCTURE
.....................................................................................................
254
B.2
CANTILEVER
PVC
WITH
CABLES
...........................................................................................
267
B.3
CANTILEVER
PVC
WITH
DAMPERS
........................................................................................
273
B.
4
POLE
................................................................................................................................
281
C
SYSTEM
IDENTIFICATION
290
C.
L
SYSTEM
IDENTIFICATION
BY
APPLYING
THE
STOCHASTIC
SUBSPACE
IDENTIFICATION
(SSI)
METHOD
USING
MACEC
................................................................................................
290
|
adam_txt |
CONTENT
DIE
EHRENWORTLICHE
ERKLARUNG
II
ACKNOWLEDGMENTS
III
ZUSAMMENFASSUNG
V
ABSTRACT
IX
CONTENT
XVII
LIST
OF
SYMBOLS
XVIII
LIST
OF
FIGURES
XXIX
LIST
OF
TABLES
1
1
INTRODUCTION
2
1.1
MOTIVATION
.
2
1.2
METHODOLOGY
.
4
1.3
OUTLINE
.
6
2
STATE
OF
THE
ART
8
2.1
DAMAGE
.
8
2.1.1
DAMAGE
AND
DAMAGE
IDENTIFICATION
.
8
2.1.2
TYPES
OF
DAMAGE
.
9
2.1.3
DAMAGE
MODELING
.
11
2.1.4
DAMAGE
DETECTION
INSPECTION
METHODS
.
18
XIII
CONTENT
XIV
2.2
THE
RELIABILITY
OF
AN
INSPECTION
METHOD
.
26
2.2.1
RELIABILITY
.
26
2.2.2
DESIGN
OF
EXPERIMENTS
.
26
2.2.3
PROBABILITY
OF
DETECTION
.
29
2.3
MODEL
QUALITY
.
30
2.3.1
MODELS
.
30
2.3.2
UNCERTAINTY
.
31
2.3.3
MODEL
QUALITY
ASSESSMENT
METHODS
.
33
2.4
CONCLUSION
.
35
3
STRATEGY
FOR
RELIABILITY
ASSESSMENT
37
3.1
OVERVIEW
.
37
3.2
PROBLEM
DEFINITION
.
39
3.3
DESIGN
OF
EXPERIMENT
.
42
3.4
SENSITIVITY
ANALYSIS
.
50
3.4.1
DOE
BASED
ON
NUMERICAL
MODEL
QUALITY
AND
SENSITIVITY
ANALYSIS
.
51
3.4.2
META-MODELING
.
54
3.4.3
CHOOSING
THE
TERMS
OF
A
META-MODEL
.
55
3.4.4
META-MODEL
FOR
SENSITIVITY
ANALYSIS
.
57
3.5
MODEL
UPDATING
.
62
3.5.1
BAYESIAN
INFERENCE
.
63
3.5.2
PRIOR
DENSITY
FUNCTION
.
64
3.5.3
LIKELIHOOD
FUNCTION
.
65
3.5.4
POSTERIOR
DENSITY
FUNCTION
.
69
3.6
THE
RELIABILITY
OF
AN
INSPECTION
METHOD
.
74
3.6.1
DAMAGE
INDICATOR
.
75
3.6.2
PROBABILITY
OF
DAMAGE
DETECTION
.
75
3.7
MODEL
QUALITY
AND
INSPECTION
METHOD
RELIABILITY
.
80
4
NUMERICAL
STUDY:
THREE
DEGREES
OF
FREEDOM
FRAME
LIKE
STRUCTURE
82
CONTENT
XV
4.1
INTRODUCTION
.
82
4.2
PROBLEM
DEFINITION
.
82
4.3
DESIGN
OF
EXPERIMENTS
.
84
4.4
SENSITIVITY
ANALYSIS
RESULTS
.
86
4.5
MODEL
UPDATING
RESULTS
.
92
4.6
RELIABILITY
OF
THE
INSPECTION
METHOD
.
92
4.6.1
DAMAGE
INDICATOR
.
92
4.6.2
DAMAGE
LOCATION
.
94
4.6.3
PROBABILITY
OF
DETECTION
CURVES
.
95
5
EXPERIMENTAL
STUDY
98
5.1
STEEL
FRAME
STRUCTURE
.
98
5.1.1
INTRODUCTION
.
98
5.1.2
PROBLEM
DEFINITION
AND
EXPERIMENTAL
TEST
SETUP
.
98
5.1.3
MODAL
PARAMETERS
.
103
5.1.4
RESULTS
UNDER
HARMONIC
EXCITATIONS
.
105
5.1.5
NUMERICAL
STUDY
.
114
5.1.6
DESIGN
OF
EXPERIMENTS
.
130
5.1.7
SENSITIVITY
ANALYSIS
.
131
5.1.8
MODEL
UPDATING
.
132
5.1.9
ASSESSMENT
OF
THE
INSPECTION
METHOD
.
132
5.1.10
CONCLUSION
.
139
5.2
CANTILEVER
.
140
5.2.1
INTRODUCTION
.
140
5.2.2
PROBLEM
DEFINITION
AND
TEST
SETUP
.
140
5.2.3
TEST
RESULTS
.
143
5.2.4
NUMERICAL
MODEL
.
155
5.2.5
DESIGN
OF
EXPERIMENTS
.
169
5.2.6
SENSITIVITY
ANALYSIS
.
171
5.2.7
MODEL
UPDATING
.
171
CONTENT
XVI
5.2.8
ASSESSMENT
OF
THE
INSPECTION
METHOD
.
173
5.2.9
CONCLUSION
.
177
6
REFERENCE
OBJECT:
POLE
178
6.1
INTRODUCTION
.
178
6.2
PROBLEM
DEFINITION
AND
TEST
SETUP
.
178
6.3
TEST
RESULTS
.
182
6.4
NUMERICAL
MODEL
.
183
6.5
DESIGN
OF
EXPERIMENTS
.
190
6.6
SENSITIVITY
ANALYSIS
.
201
6.7
MODEL
UPDATING
.
203
6.8
ASSESSMENT
OF
THE
INSPECTION
METHOD
.
205
6.9
CONCLUSION
.
214
7
DISCUSSION
215
7.1
INTRODUCTION
.
215
7.2
QUALITY
ASSESSMENT:
LIMITATION
AND
IMPROVEMENT
.
216
7.2.1
ASSESSMENT
PROCEDURE
.
216
7.2.2
ASSESSMENT
RESULTS
.
216
7.3
CONCLUSION
.
222
8
CONCLUSION
AND
OUTLOOK
225
REFERENCES
240
A
MATLAB
IMPLEMENTATIONS
241
A.
L
BAYESIAN
MODEL
UPDATING
.
241
A.
2
SAMPLING
FROM
A
UNIFORM
DISTRIBUTION
FUNCTION
.
246
A.
3
SAMPLING
FROM
ANY
DISTRIBUTION
FUNCTION
USING
THE
INVERSE
METHOD
.
247
A.
4
PROBABILITY
OF
DETECTION
.
247
A.
5
DEVELOPING
META-MODELS
AND
SELECTING
THEIR
TERMS
.
249
CONTENT
XVII
B
FINITE
ELEMENT
MODELS
(LS
DYNA
REDUCED
INPUT)
254
B.
L
STEEL
FRAME
STRUCTURE
.
254
B.2
CANTILEVER
PVC
WITH
CABLES
.
267
B.3
CANTILEVER
PVC
WITH
DAMPERS
.
273
B.
4
POLE
.
281
C
SYSTEM
IDENTIFICATION
290
C.
L
SYSTEM
IDENTIFICATION
BY
APPLYING
THE
STOCHASTIC
SUBSPACE
IDENTIFICATION
(SSI)
METHOD
USING
MACEC
.
290 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Deeb, Maher 1984- |
author_GND | (DE-588)1205762280 |
author_facet | Deeb, Maher 1984- |
author_role | aut |
author_sort | Deeb, Maher 1984- |
author_variant | m d md |
building | Verbundindex |
bvnumber | BV048467101 |
classification_rvk | ZM 3700 |
ctrlnum | (OCoLC)1165398788 (DE-599)DNB1200556968 |
discipline | Werkstoffwissenschaften / Fertigungstechnik |
discipline_str_mv | Werkstoffwissenschaften / Fertigungstechnik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02702nam a2200601 cb4500</leader><controlfield tag="001">BV048467101</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230811 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220913s2019 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,A35</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,H09</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1200556968</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783957732804</subfield><subfield code="c">Broschur</subfield><subfield code="9">978-3-95773-280-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165398788</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1200556968</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZM 3700</subfield><subfield code="0">(DE-625)157028:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">624</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deeb, Maher</subfield><subfield code="d">1984-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1205762280</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reliability of vibration-based nondestructive inspection methods for damage detection in structural engineering</subfield><subfield code="c">vorgelegt von Maher Deeb</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Ilmtal-Weinstraße</subfield><subfield code="b">Bauhaus Universitätsverlag</subfield><subfield code="c">[2019]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxxii, 295 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">30 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Schriftenreihe des DFG-Graduiertenkollegs 1462 Modellqualitäten</subfield><subfield code="v">Heft 20</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Bauhaus-Universität Weimar</subfield><subfield code="d">2018</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schadenfrüherkennung</subfield><subfield code="0">(DE-588)4179292-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modalanalyse</subfield><subfield code="0">(DE-588)4226177-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zerstörungsfreie Werkstoffprüfung</subfield><subfield code="0">(DE-588)4067689-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bauwerk</subfield><subfield code="0">(DE-588)4112681-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Technische Überwachung</subfield><subfield code="0">(DE-588)4059237-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tragwerk</subfield><subfield code="0">(DE-588)4060592-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zuverlässigkeit</subfield><subfield code="0">(DE-588)4059245-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Tragwerk</subfield><subfield code="0">(DE-588)4060592-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Schadenfrüherkennung</subfield><subfield code="0">(DE-588)4179292-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Zuverlässigkeit</subfield><subfield code="0">(DE-588)4059245-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Zerstörungsfreie Werkstoffprüfung</subfield><subfield code="0">(DE-588)4067689-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Modalanalyse</subfield><subfield code="0">(DE-588)4226177-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Stochastisches Modell</subfield><subfield code="0">(DE-588)4057633-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Bauwerk</subfield><subfield code="0">(DE-588)4112681-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Technische Überwachung</subfield><subfield code="0">(DE-588)4059237-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Schriftenreihe des DFG-Graduiertenkollegs 1462 Modellqualitäten</subfield><subfield code="v">Heft 20</subfield><subfield code="w">(DE-604)BV039163733</subfield><subfield code="9">20</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033844980&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033844980</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV048467101 |
illustrated | Illustrated |
index_date | 2024-07-03T20:35:40Z |
indexdate | 2024-07-10T09:38:56Z |
institution | BVB |
isbn | 9783957732804 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033844980 |
oclc_num | 1165398788 |
open_access_boolean | |
owner | DE-83 |
owner_facet | DE-83 |
physical | xxxii, 295 Seiten Illustrationen, Diagramme 30 cm |
publishDate | 2019 |
publishDateSearch | 2019 |
publishDateSort | 2019 |
publisher | Bauhaus Universitätsverlag |
record_format | marc |
series | Schriftenreihe des DFG-Graduiertenkollegs 1462 Modellqualitäten |
series2 | Schriftenreihe des DFG-Graduiertenkollegs 1462 Modellqualitäten |
spelling | Deeb, Maher 1984- Verfasser (DE-588)1205762280 aut Reliability of vibration-based nondestructive inspection methods for damage detection in structural engineering vorgelegt von Maher Deeb Ilmtal-Weinstraße Bauhaus Universitätsverlag [2019] xxxii, 295 Seiten Illustrationen, Diagramme 30 cm txt rdacontent n rdamedia nc rdacarrier Schriftenreihe des DFG-Graduiertenkollegs 1462 Modellqualitäten Heft 20 Dissertation Bauhaus-Universität Weimar 2018 Schadenfrüherkennung (DE-588)4179292-0 gnd rswk-swf Modalanalyse (DE-588)4226177-6 gnd rswk-swf Zerstörungsfreie Werkstoffprüfung (DE-588)4067689-4 gnd rswk-swf Bauwerk (DE-588)4112681-6 gnd rswk-swf Technische Überwachung (DE-588)4059237-6 gnd rswk-swf Tragwerk (DE-588)4060592-9 gnd rswk-swf Zuverlässigkeit (DE-588)4059245-5 gnd rswk-swf Stochastisches Modell (DE-588)4057633-4 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Tragwerk (DE-588)4060592-9 s Schadenfrüherkennung (DE-588)4179292-0 s Zuverlässigkeit (DE-588)4059245-5 s Zerstörungsfreie Werkstoffprüfung (DE-588)4067689-4 s Modalanalyse (DE-588)4226177-6 s Stochastisches Modell (DE-588)4057633-4 s DE-604 Bauwerk (DE-588)4112681-6 s Technische Überwachung (DE-588)4059237-6 s Schriftenreihe des DFG-Graduiertenkollegs 1462 Modellqualitäten Heft 20 (DE-604)BV039163733 20 DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033844980&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Deeb, Maher 1984- Reliability of vibration-based nondestructive inspection methods for damage detection in structural engineering Schriftenreihe des DFG-Graduiertenkollegs 1462 Modellqualitäten Schadenfrüherkennung (DE-588)4179292-0 gnd Modalanalyse (DE-588)4226177-6 gnd Zerstörungsfreie Werkstoffprüfung (DE-588)4067689-4 gnd Bauwerk (DE-588)4112681-6 gnd Technische Überwachung (DE-588)4059237-6 gnd Tragwerk (DE-588)4060592-9 gnd Zuverlässigkeit (DE-588)4059245-5 gnd Stochastisches Modell (DE-588)4057633-4 gnd |
subject_GND | (DE-588)4179292-0 (DE-588)4226177-6 (DE-588)4067689-4 (DE-588)4112681-6 (DE-588)4059237-6 (DE-588)4060592-9 (DE-588)4059245-5 (DE-588)4057633-4 (DE-588)4113937-9 |
title | Reliability of vibration-based nondestructive inspection methods for damage detection in structural engineering |
title_auth | Reliability of vibration-based nondestructive inspection methods for damage detection in structural engineering |
title_exact_search | Reliability of vibration-based nondestructive inspection methods for damage detection in structural engineering |
title_exact_search_txtP | Reliability of vibration-based nondestructive inspection methods for damage detection in structural engineering |
title_full | Reliability of vibration-based nondestructive inspection methods for damage detection in structural engineering vorgelegt von Maher Deeb |
title_fullStr | Reliability of vibration-based nondestructive inspection methods for damage detection in structural engineering vorgelegt von Maher Deeb |
title_full_unstemmed | Reliability of vibration-based nondestructive inspection methods for damage detection in structural engineering vorgelegt von Maher Deeb |
title_short | Reliability of vibration-based nondestructive inspection methods for damage detection in structural engineering |
title_sort | reliability of vibration based nondestructive inspection methods for damage detection in structural engineering |
topic | Schadenfrüherkennung (DE-588)4179292-0 gnd Modalanalyse (DE-588)4226177-6 gnd Zerstörungsfreie Werkstoffprüfung (DE-588)4067689-4 gnd Bauwerk (DE-588)4112681-6 gnd Technische Überwachung (DE-588)4059237-6 gnd Tragwerk (DE-588)4060592-9 gnd Zuverlässigkeit (DE-588)4059245-5 gnd Stochastisches Modell (DE-588)4057633-4 gnd |
topic_facet | Schadenfrüherkennung Modalanalyse Zerstörungsfreie Werkstoffprüfung Bauwerk Technische Überwachung Tragwerk Zuverlässigkeit Stochastisches Modell Hochschulschrift |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033844980&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV039163733 |
work_keys_str_mv | AT deebmaher reliabilityofvibrationbasednondestructiveinspectionmethodsfordamagedetectioninstructuralengineering |