Neural networks and numerical analysis:
This book uses numerical analysis as the main tool to investigate methods in machine learning and neural networks. The efficiency of neural network representations for general functions and for polynomial functions is studied in detail, together with an original description of the Latin hypercube me...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2022]
|
Schriftenreihe: | De Gruyter series in applied and numerical Mmthematics
volume 6 |
Schlagworte: | |
Online-Zugang: | DE-1043 DE-1046 DE-858 DE-898 DE-859 DE-860 DE-91 DE-706 DE-739 Volltext |
Zusammenfassung: | This book uses numerical analysis as the main tool to investigate methods in machine learning and neural networks. The efficiency of neural network representations for general functions and for polynomial functions is studied in detail, together with an original description of the Latin hypercube method and of the ADAM algorithm for training. Furthermore, unique features include the use of Tensorflow for implementation session, and the description of on going research about the construction of new optimized numerical schemes |
Beschreibung: | Description based on online resource; title from PDF title page (publisher's Web site, viewed 30. Aug 2022) |
Beschreibung: | 1 Online-Ressource (XV, 156 Seiten) Diagramme |
ISBN: | 9783110783186 9783110783261 |
DOI: | 10.1515/9783110783186 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV048457633 | ||
003 | DE-604 | ||
005 | 20250331 | ||
007 | cr|uuu---uuuuu | ||
008 | 220906s2022 xx |||| o|||| 00||| eng d | ||
020 | |a 9783110783186 |c PDF |9 978-3-11-078318-6 | ||
020 | |a 9783110783261 |c EPUB |9 978-3-11-078326-1 | ||
024 | 7 | |a 10.1515/9783110783186 |2 doi | |
035 | |a (ZDB-23-DGG)9783110783186 | ||
035 | |a (OCoLC)1344257757 | ||
035 | |a (DE-599)BVBBV048457633 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-859 |a DE-860 |a DE-739 |a DE-91 |a DE-898 |a DE-706 |a DE-11 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a SK 900 |0 (DE-625)143268: |2 rvk | ||
084 | |a ST 132 |0 (DE-625)143589: |2 rvk | ||
084 | |a ST 301 |0 (DE-625)143651: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Després, Bruno |d 1965- |e Verfasser |0 (DE-588)1138723223 |4 aut | |
245 | 1 | 0 | |a Neural networks and numerical analysis |c Bruno Després |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (XV, 156 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a De Gruyter series in applied and numerical Mmthematics |v volume 6 | |
500 | |a Description based on online resource; title from PDF title page (publisher's Web site, viewed 30. Aug 2022) | ||
520 | |a This book uses numerical analysis as the main tool to investigate methods in machine learning and neural networks. The efficiency of neural network representations for general functions and for polynomial functions is studied in detail, together with an original description of the Latin hypercube method and of the ADAM algorithm for training. Furthermore, unique features include the use of Tensorflow for implementation session, and the description of on going research about the construction of new optimized numerical schemes | ||
546 | |a In English | ||
650 | 4 | |a Neuronale Netze | |
650 | 4 | |a Numerische Mathematik | |
650 | 4 | |a Näherungseigenschaften | |
650 | 7 | |a MATHEMATICS / Numerical Analysis |2 bisacsh | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-078312-4 |w (DE-604)BV048554181 |
830 | 0 | |a De Gruyter series in applied and numerical Mmthematics |v volume 6 |w (DE-604)BV044780808 |9 6 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110783186 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG | ||
912 | |a ZDB-23-DMA | ||
940 | 1 | |q ZDB-23-DMA22 | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033835685 | |
966 | e | |u https://doi.org/10.1515/9783110783186 |l DE-1043 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110783186 |l DE-1046 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110783186 |l DE-858 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110783186?locatt=mode:legacy |l DE-898 |p ZDB-23-DMA |q ZDB-23-DMA22 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110783186 |l DE-859 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110783186 |l DE-860 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110783186 |l DE-91 |p ZDB-23-DMA |q TUM_Paketkauf_2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110783186 |l DE-706 |p ZDB-23-DMA |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110783186 |l DE-739 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1828111038104469504 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Després, Bruno 1965- |
author_GND | (DE-588)1138723223 |
author_facet | Després, Bruno 1965- |
author_role | aut |
author_sort | Després, Bruno 1965- |
author_variant | b d bd |
building | Verbundindex |
bvnumber | BV048457633 |
classification_rvk | ST 300 SK 900 ST 132 ST 301 |
classification_tum | MAT 000 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9783110783186 (OCoLC)1344257757 (DE-599)BVBBV048457633 |
discipline | Informatik Mathematik |
discipline_str_mv | Informatik Mathematik |
doi_str_mv | 10.1515/9783110783186 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 cb4500</leader><controlfield tag="001">BV048457633</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20250331</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220906s2022 xx |||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110783186</subfield><subfield code="c">PDF</subfield><subfield code="9">978-3-11-078318-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110783261</subfield><subfield code="c">EPUB</subfield><subfield code="9">978-3-11-078326-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110783186</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110783186</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1344257757</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048457633</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 900</subfield><subfield code="0">(DE-625)143268:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 132</subfield><subfield code="0">(DE-625)143589:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 301</subfield><subfield code="0">(DE-625)143651:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Després, Bruno</subfield><subfield code="d">1965-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1138723223</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Neural networks and numerical analysis</subfield><subfield code="c">Bruno Després</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 156 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">De Gruyter series in applied and numerical Mmthematics</subfield><subfield code="v">volume 6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Description based on online resource; title from PDF title page (publisher's Web site, viewed 30. Aug 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book uses numerical analysis as the main tool to investigate methods in machine learning and neural networks. The efficiency of neural network representations for general functions and for polynomial functions is studied in detail, together with an original description of the Latin hypercube method and of the ADAM algorithm for training. Furthermore, unique features include the use of Tensorflow for implementation session, and the description of on going research about the construction of new optimized numerical schemes</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neuronale Netze</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerische Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Näherungseigenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Numerical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-078312-4</subfield><subfield code="w">(DE-604)BV048554181</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">De Gruyter series in applied and numerical Mmthematics</subfield><subfield code="v">volume 6</subfield><subfield code="w">(DE-604)BV044780808</subfield><subfield code="9">6</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110783186</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-23-DMA22</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033835685</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110783186</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110783186</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110783186</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110783186?locatt=mode:legacy</subfield><subfield code="l">DE-898</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA22</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110783186</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110783186</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110783186</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110783186</subfield><subfield code="l">DE-706</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110783186</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048457633 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:32:37Z |
indexdate | 2025-03-31T12:02:24Z |
institution | BVB |
isbn | 9783110783186 9783110783261 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033835685 |
oclc_num | 1344257757 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-706 DE-11 |
owner_facet | DE-1043 DE-1046 DE-858 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-706 DE-11 |
physical | 1 Online-Ressource (XV, 156 Seiten) Diagramme |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DMA22 ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DMA ZDB-23-DMA22 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf_2022 ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | De Gruyter |
record_format | marc |
series | De Gruyter series in applied and numerical Mmthematics |
series2 | De Gruyter series in applied and numerical Mmthematics |
spelling | Després, Bruno 1965- Verfasser (DE-588)1138723223 aut Neural networks and numerical analysis Bruno Després Berlin ; Boston De Gruyter [2022] © 2022 1 Online-Ressource (XV, 156 Seiten) Diagramme txt rdacontent c rdamedia cr rdacarrier De Gruyter series in applied and numerical Mmthematics volume 6 Description based on online resource; title from PDF title page (publisher's Web site, viewed 30. Aug 2022) This book uses numerical analysis as the main tool to investigate methods in machine learning and neural networks. The efficiency of neural network representations for general functions and for polynomial functions is studied in detail, together with an original description of the Latin hypercube method and of the ADAM algorithm for training. Furthermore, unique features include the use of Tensorflow for implementation session, and the description of on going research about the construction of new optimized numerical schemes In English Neuronale Netze Numerische Mathematik Näherungseigenschaften MATHEMATICS / Numerical Analysis bisacsh Erscheint auch als Druck-Ausgabe 978-3-11-078312-4 (DE-604)BV048554181 De Gruyter series in applied and numerical Mmthematics volume 6 (DE-604)BV044780808 6 https://doi.org/10.1515/9783110783186 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Després, Bruno 1965- Neural networks and numerical analysis Neuronale Netze Numerische Mathematik Näherungseigenschaften MATHEMATICS / Numerical Analysis bisacsh De Gruyter series in applied and numerical Mmthematics |
title | Neural networks and numerical analysis |
title_auth | Neural networks and numerical analysis |
title_exact_search | Neural networks and numerical analysis |
title_exact_search_txtP | Neural Networks and Numerical Analysis |
title_full | Neural networks and numerical analysis Bruno Després |
title_fullStr | Neural networks and numerical analysis Bruno Després |
title_full_unstemmed | Neural networks and numerical analysis Bruno Després |
title_short | Neural networks and numerical analysis |
title_sort | neural networks and numerical analysis |
topic | Neuronale Netze Numerische Mathematik Näherungseigenschaften MATHEMATICS / Numerical Analysis bisacsh |
topic_facet | Neuronale Netze Numerische Mathematik Näherungseigenschaften MATHEMATICS / Numerical Analysis |
url | https://doi.org/10.1515/9783110783186 |
volume_link | (DE-604)BV044780808 |
work_keys_str_mv | AT despresbruno neuralnetworksandnumericalanalysis |