Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on R3+1:
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Providence ; RI
American Mathematical Society
[2022]
|
Schriftenreihe: | Memoirs of the American Mathematical Society
volume 278, number 1369 (fourth of 6 numbers) |
Online-Zugang: | Inhaltsverzeichnis |
Beschreibung: | Includes bibliographical references (Seite 71-74) |
Beschreibung: | iii, 75 Seiten |
ISBN: | 9781470453466 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV048454902 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | t | ||
008 | 220905s2022 xxu |||| 00||| eng d | ||
020 | |a 9781470453466 |9 978-1-4704-5346-6 | ||
024 | 7 | |a 10.1090/memo/1369 |2 doi | |
035 | |a (OCoLC)1341588041 | ||
035 | |a (DE-599)KXP1814905596 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxu |c XD-US | ||
049 | |a DE-83 |a DE-29T |a DE-355 |a DE-11 | ||
100 | 1 | |a Burzio, Stefano |d 1989- |0 (DE-588)1214722911 |4 aut | |
245 | 1 | 0 | |a Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on R3+1 |c Stefano Burzio ; Joachim Krieger |
264 | 1 | |a Providence ; RI |b American Mathematical Society |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a iii, 75 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a Memoirs of the American Mathematical Society |v volume 278, number 1369 (fourth of 6 numbers) | |
500 | |a Includes bibliographical references (Seite 71-74) | ||
700 | 1 | |a Krieger, Joachim |d 1976- |0 (DE-588)173835848 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-4704-7169-9 |
830 | 0 | |a Memoirs of the American Mathematical Society |v volume 278, number 1369 (fourth of 6 numbers) |w (DE-604)BV008000141 |9 1369 | |
856 | 4 | 2 | |m HEBIS Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033832989&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033832989 |
Datensatz im Suchindex
_version_ | 1804184389879332864 |
---|---|
adam_text | Contents
Chapter 1 Introduction
1 1 The type IJ blow up solutions of [33], [32]
1 2 The effect of symmetries on the solutions of Theorem 1 1
1 3 Conditional stability of type II solutions
1 4 Spectral theory associated with the linearisation £
1 5 Description of the data perturbation in terms of the distorted Fourier
transform
1 6 Outline of the main result from [26]
1 7 Figures
Chapter 2 The main theorem and outline of the proof
2 1 The main theorem
2 2 Outline of the proof
Chapter 3 Construction of a two parameter family of approximate blow up
solutions
3 1 Step 0: the bulk term
3 2 Step 1: choice of the first correction v4
3 3 Step 2: the eı error
3 4 Step 3: choice of second correction ve
3 5 Step 4: the eg error
3 6 Step 5: inductive step
3 7 Step 6: choice of Usmooth,a, @ = 1,2
Chapter 4 Modulation theory; determination of the parameters -y; 2
4 1 Re-scalings and the distorted Fourier transform
4 2 The effect of scaling the bulk part
Chapter 5 Iterative construction of blow up solution almost matching the
perturbed initial data
5 1 Formulation of the perturbation problem on Fourier side
5 2 The proof of Theorem 5 1
5 3 Translation to original coordinate system
Chapter 6 Proof of Theorem 2 1
Chapter 7 Outlook
Bibliography
Index
Op wWnNre
il
|
adam_txt |
Contents
Chapter 1 Introduction
1 1 The type IJ blow up solutions of [33], [32]
1 2 The effect of symmetries on the solutions of Theorem 1 1
1 3 Conditional stability of type II solutions
1 4 Spectral theory associated with the linearisation £
1 5 Description of the data perturbation in terms of the distorted Fourier
transform
1 6 Outline of the main result from [26]
1 7 Figures
Chapter 2 The main theorem and outline of the proof
2 1 The main theorem
2 2 Outline of the proof
Chapter 3 Construction of a two parameter family of approximate blow up
solutions
3 1 Step 0: the bulk term
3 2 Step 1: choice of the first correction v4
3 3 Step 2: the eı error
3 4 Step 3: choice of second correction ve
3 5 Step 4: the eg error
3 6 Step 5: inductive step
3 7 Step 6: choice of Usmooth,a, @ = 1,2
Chapter 4 Modulation theory; determination of the parameters -y; 2
4 1 Re-scalings and the distorted Fourier transform
4 2 The effect of scaling the bulk part
Chapter 5 Iterative construction of blow up solution almost matching the
perturbed initial data
5 1 Formulation of the perturbation problem on Fourier side
5 2 The proof of Theorem 5 1
5 3 Translation to original coordinate system
Chapter 6 Proof of Theorem 2 1
Chapter 7 Outlook
Bibliography
Index
Op wWnNre
il |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Burzio, Stefano 1989- Krieger, Joachim 1976- |
author_GND | (DE-588)1214722911 (DE-588)173835848 |
author_facet | Burzio, Stefano 1989- Krieger, Joachim 1976- |
author_role | aut aut |
author_sort | Burzio, Stefano 1989- |
author_variant | s b sb j k jk |
building | Verbundindex |
bvnumber | BV048454902 |
ctrlnum | (OCoLC)1341588041 (DE-599)KXP1814905596 |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01643nam a2200361 cb4500</leader><controlfield tag="001">BV048454902</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220905s2022 xxu |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781470453466</subfield><subfield code="9">978-1-4704-5346-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1090/memo/1369</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1341588041</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1814905596</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxu</subfield><subfield code="c">XD-US</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-29T</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burzio, Stefano</subfield><subfield code="d">1989-</subfield><subfield code="0">(DE-588)1214722911</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on R3+1</subfield><subfield code="c">Stefano Burzio ; Joachim Krieger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Providence ; RI</subfield><subfield code="b">American Mathematical Society</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">iii, 75 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">volume 278, number 1369 (fourth of 6 numbers)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (Seite 71-74)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Krieger, Joachim</subfield><subfield code="d">1976-</subfield><subfield code="0">(DE-588)173835848</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-4704-7169-9</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Memoirs of the American Mathematical Society</subfield><subfield code="v">volume 278, number 1369 (fourth of 6 numbers)</subfield><subfield code="w">(DE-604)BV008000141</subfield><subfield code="9">1369</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">HEBIS Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033832989&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033832989</subfield></datafield></record></collection> |
id | DE-604.BV048454902 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:32:07Z |
indexdate | 2024-07-10T09:38:34Z |
institution | BVB |
isbn | 9781470453466 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033832989 |
oclc_num | 1341588041 |
open_access_boolean | |
owner | DE-83 DE-29T DE-355 DE-BY-UBR DE-11 |
owner_facet | DE-83 DE-29T DE-355 DE-BY-UBR DE-11 |
physical | iii, 75 Seiten |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | American Mathematical Society |
record_format | marc |
series | Memoirs of the American Mathematical Society |
series2 | Memoirs of the American Mathematical Society |
spelling | Burzio, Stefano 1989- (DE-588)1214722911 aut Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on R3+1 Stefano Burzio ; Joachim Krieger Providence ; RI American Mathematical Society [2022] © 2022 iii, 75 Seiten txt rdacontent n rdamedia nc rdacarrier Memoirs of the American Mathematical Society volume 278, number 1369 (fourth of 6 numbers) Includes bibliographical references (Seite 71-74) Krieger, Joachim 1976- (DE-588)173835848 aut Erscheint auch als Online-Ausgabe 978-1-4704-7169-9 Memoirs of the American Mathematical Society volume 278, number 1369 (fourth of 6 numbers) (DE-604)BV008000141 1369 HEBIS Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033832989&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Burzio, Stefano 1989- Krieger, Joachim 1976- Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on R3+1 Memoirs of the American Mathematical Society |
title | Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on R3+1 |
title_auth | Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on R3+1 |
title_exact_search | Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on R3+1 |
title_exact_search_txtP | Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on R3+1 |
title_full | Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on R3+1 Stefano Burzio ; Joachim Krieger |
title_fullStr | Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on R3+1 Stefano Burzio ; Joachim Krieger |
title_full_unstemmed | Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on R3+1 Stefano Burzio ; Joachim Krieger |
title_short | Type II blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on R3+1 |
title_sort | type ii blow up solutions with optimal stability properties for the critical focussing nonlinear wave equation on r3 1 |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033832989&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
volume_link | (DE-604)BV008000141 |
work_keys_str_mv | AT burziostefano typeiiblowupsolutionswithoptimalstabilitypropertiesforthecriticalfocussingnonlinearwaveequationonr31 AT kriegerjoachim typeiiblowupsolutionswithoptimalstabilitypropertiesforthecriticalfocussingnonlinearwaveequationonr31 |