Exploring big historical data: the historian's macroscope
The joys of big data for historians -- The DH moment -- Data mining tools : techniques and visualizations -- Topic modeling : a hands-on adventure in big data -- Making your data legible : a basic introduction to visualizations -- Network analysis -- Networks in practice.
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2022]
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | The joys of big data for historians -- The DH moment -- Data mining tools : techniques and visualizations -- Topic modeling : a hands-on adventure in big data -- Making your data legible : a basic introduction to visualizations -- Network analysis -- Networks in practice. "Every day, more and more kinds of historical data become available, opening exciting new avenues of inquiry but also new challenges. This updated and expanded book describes and demonstrates the ways these data can be explored to construct cultural heritage knowledge, for research and in teaching and learning. It helps humanities scholars to grasp Big Data in order to do their work, whether that means understanding the underlying algorithms at work in search engines or designing and using their own tools to process large amounts of information. Demonstrating what digital tools have to offer and also what 'digital' does to how we understand the past, the authors introduce the many different tools and developing approaches in Big Data for historical and humanistic scholarship, show how to use them, what to be wary of, and discuss the kinds of questions and new perspectives this new macroscopic perspective opens up. Originally authored 'live' online with ongoing feedback from the wider digital history community, Exploring Big Historical Data breaks new ground and sets the direction for the conversation into the future. Exploring Big Historical Data should be the go-to resource for undergraduate and graduate students confronted by a vast corpus of data, and researchers encountering these methods for the first time. It will also offer a helping hand to the interested individual seeking to make sense of genealogical data or digitized newspapers, and even the local historical society who are trying to see the value in digitizing their holdings"-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xxvi, 278 Seiten Illustrationen 23 cm |
ISBN: | 9789811243035 9789811243981 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048449638 | ||
003 | DE-604 | ||
005 | 20221116 | ||
007 | t | ||
008 | 220831s2022 a||| |||| 00||| eng d | ||
010 | |a 2021043872 | ||
020 | |a 9789811243035 |c hardcover |9 978-981-12-4303-5 | ||
020 | |a 9789811243981 |c paperback |9 978-981-12-4398-1 | ||
035 | |a (ELiSA)ELiSA-9789811243981 | ||
035 | |a (OCoLC)1311972187 | ||
035 | |a (DE-599)KXP1772351059 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-210 |a DE-355 |a DE-739 | ||
084 | |a AK 54515 |0 (DE-625)164545: |2 rvk | ||
100 | 1 | |a Graham, Shawn |e Verfasser |0 (DE-588)1216269335 |4 aut | |
245 | 1 | 0 | |a Exploring big historical data |b the historian's macroscope |c Shawn Graham (Carleton University, Canada), Ian Milligan (University of Waterloo, Canada), Scott B. Weingart (University of Notre Dame, USA), Kim Martin (University of Guelph, Canada) |
250 | |a Second edition | ||
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a xxvi, 278 Seiten |b Illustrationen |c 23 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | |a The joys of big data for historians -- The DH moment -- Data mining tools : techniques and visualizations -- Topic modeling : a hands-on adventure in big data -- Making your data legible : a basic introduction to visualizations -- Network analysis -- Networks in practice. | ||
520 | |a "Every day, more and more kinds of historical data become available, opening exciting new avenues of inquiry but also new challenges. This updated and expanded book describes and demonstrates the ways these data can be explored to construct cultural heritage knowledge, for research and in teaching and learning. It helps humanities scholars to grasp Big Data in order to do their work, whether that means understanding the underlying algorithms at work in search engines or designing and using their own tools to process large amounts of information. Demonstrating what digital tools have to offer and also what 'digital' does to how we understand the past, the authors introduce the many different tools and developing approaches in Big Data for historical and humanistic scholarship, show how to use them, what to be wary of, and discuss the kinds of questions and new perspectives this new macroscopic perspective opens up. Originally authored 'live' online with ongoing feedback from the wider digital history community, Exploring Big Historical Data breaks new ground and sets the direction for the conversation into the future. Exploring Big Historical Data should be the go-to resource for undergraduate and graduate students confronted by a vast corpus of data, and researchers encountering these methods for the first time. It will also offer a helping hand to the interested individual seeking to make sense of genealogical data or digitized newspapers, and even the local historical society who are trying to see the value in digitizing their holdings"-- | ||
650 | 4 | |a History |x Computer network resources | |
650 | 4 | |a Big data | |
650 | 4 | |a Historiography |x Methodology | |
650 | 4 | |a History |x Research | |
650 | 0 | 7 | |a Datenauswertung |0 (DE-588)4131193-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Big Data |0 (DE-588)4802620-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geschichtswissenschaft |0 (DE-588)4020535-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Methode |0 (DE-588)4038971-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Digitalisierung |0 (DE-588)4123065-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geisteswissenschaften |0 (DE-588)4019838-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Digital Humanities |0 (DE-588)1038714850 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datentechnik |0 (DE-588)4148885-4 |2 gnd |9 rswk-swf |
653 | |a Computing: Professional & Programming | ||
689 | 0 | 0 | |a Big Data |0 (DE-588)4802620-7 |D s |
689 | 0 | 1 | |a Geschichtswissenschaft |0 (DE-588)4020535-6 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Digital Humanities |0 (DE-588)1038714850 |D s |
689 | 1 | 1 | |a Methode |0 (DE-588)4038971-6 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Digital Humanities |0 (DE-588)1038714850 |D s |
689 | 2 | 1 | |a Datenauswertung |0 (DE-588)4131193-0 |D s |
689 | 2 | 2 | |a Datentechnik |0 (DE-588)4148885-4 |D s |
689 | 2 | 3 | |a Geisteswissenschaften |0 (DE-588)4019838-8 |D s |
689 | 2 | |5 DE-604 | |
689 | 3 | 0 | |a Geisteswissenschaften |0 (DE-588)4019838-8 |D s |
689 | 3 | 1 | |a Digitalisierung |0 (DE-588)4123065-6 |D s |
689 | 3 | 2 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 3 | |5 DE-604 | |
700 | 1 | |a Milligan, Ian |d 1983- |e Verfasser |0 (DE-588)1071079409 |4 aut | |
700 | 1 | |a Weingart, Scott B. |e Verfasser |0 (DE-588)1082324361 |4 aut | |
700 | 1 | |a Martin, Kim |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |c (ebook for institutions) |z 9789811243042 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |c (ebook for individuals) |z 9789811243059 |
856 | 4 | 2 | |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033827811&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033827811 |
Datensatz im Suchindex
_version_ | 1804184380764061696 |
---|---|
adam_text | Contents Acknowledgements Figures, URLs, and Code Preface ix xi xv Chapter 1 The Joys of Big Data for Historians Chapter 2 The DH Moment 35 Chapter 3 Data Mining Tools: Techniques and Visualizations 73 Chapter 4 Topic Modeling: A Hands-On Adventure in Big Data 115 Chapter 5 Making Your Data Legible: A Basic Introduction to Visualizations 155 Chapter 6 Network Analysis 191 Chapter 7 Conclusion Networks in Practice 229 263 1 271 Index vii
|
adam_txt |
Contents Acknowledgements Figures, URLs, and Code Preface ix xi xv Chapter 1 The Joys of Big Data for Historians Chapter 2 The DH Moment 35 Chapter 3 Data Mining Tools: Techniques and Visualizations 73 Chapter 4 Topic Modeling: A Hands-On Adventure in Big Data 115 Chapter 5 Making Your Data Legible: A Basic Introduction to Visualizations 155 Chapter 6 Network Analysis 191 Chapter 7 Conclusion Networks in Practice 229 263 1 271 Index vii |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Graham, Shawn Milligan, Ian 1983- Weingart, Scott B. Martin, Kim |
author_GND | (DE-588)1216269335 (DE-588)1071079409 (DE-588)1082324361 |
author_facet | Graham, Shawn Milligan, Ian 1983- Weingart, Scott B. Martin, Kim |
author_role | aut aut aut aut |
author_sort | Graham, Shawn |
author_variant | s g sg i m im s b w sb sbw k m km |
building | Verbundindex |
bvnumber | BV048449638 |
classification_rvk | AK 54515 |
ctrlnum | (ELiSA)ELiSA-9789811243981 (OCoLC)1311972187 (DE-599)KXP1772351059 |
discipline | Allgemeines |
discipline_str_mv | Allgemeines |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05382nam a2200781 c 4500</leader><controlfield tag="001">BV048449638</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221116 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220831s2022 a||| |||| 00||| eng d</controlfield><datafield tag="010" ind1=" " ind2=" "><subfield code="a">2021043872</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811243035</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-981-12-4303-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811243981</subfield><subfield code="c">paperback</subfield><subfield code="9">978-981-12-4398-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ELiSA)ELiSA-9789811243981</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1311972187</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1772351059</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-210</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">AK 54515</subfield><subfield code="0">(DE-625)164545:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Graham, Shawn</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1216269335</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Exploring big historical data</subfield><subfield code="b">the historian's macroscope</subfield><subfield code="c">Shawn Graham (Carleton University, Canada), Ian Milligan (University of Waterloo, Canada), Scott B. Weingart (University of Notre Dame, USA), Kim Martin (University of Guelph, Canada)</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxvi, 278 Seiten</subfield><subfield code="b">Illustrationen</subfield><subfield code="c">23 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The joys of big data for historians -- The DH moment -- Data mining tools : techniques and visualizations -- Topic modeling : a hands-on adventure in big data -- Making your data legible : a basic introduction to visualizations -- Network analysis -- Networks in practice.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"Every day, more and more kinds of historical data become available, opening exciting new avenues of inquiry but also new challenges. This updated and expanded book describes and demonstrates the ways these data can be explored to construct cultural heritage knowledge, for research and in teaching and learning. It helps humanities scholars to grasp Big Data in order to do their work, whether that means understanding the underlying algorithms at work in search engines or designing and using their own tools to process large amounts of information. Demonstrating what digital tools have to offer and also what 'digital' does to how we understand the past, the authors introduce the many different tools and developing approaches in Big Data for historical and humanistic scholarship, show how to use them, what to be wary of, and discuss the kinds of questions and new perspectives this new macroscopic perspective opens up. Originally authored 'live' online with ongoing feedback from the wider digital history community, Exploring Big Historical Data breaks new ground and sets the direction for the conversation into the future. Exploring Big Historical Data should be the go-to resource for undergraduate and graduate students confronted by a vast corpus of data, and researchers encountering these methods for the first time. It will also offer a helping hand to the interested individual seeking to make sense of genealogical data or digitized newspapers, and even the local historical society who are trying to see the value in digitizing their holdings"--</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">History</subfield><subfield code="x">Computer network resources</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Big data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Historiography</subfield><subfield code="x">Methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">History</subfield><subfield code="x">Research</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenauswertung</subfield><subfield code="0">(DE-588)4131193-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geschichtswissenschaft</subfield><subfield code="0">(DE-588)4020535-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Digitalisierung</subfield><subfield code="0">(DE-588)4123065-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geisteswissenschaften</subfield><subfield code="0">(DE-588)4019838-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Digital Humanities</subfield><subfield code="0">(DE-588)1038714850</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datentechnik</subfield><subfield code="0">(DE-588)4148885-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Computing: Professional & Programming</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Big Data</subfield><subfield code="0">(DE-588)4802620-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichtswissenschaft</subfield><subfield code="0">(DE-588)4020535-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Digital Humanities</subfield><subfield code="0">(DE-588)1038714850</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Methode</subfield><subfield code="0">(DE-588)4038971-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Digital Humanities</subfield><subfield code="0">(DE-588)1038714850</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Datenauswertung</subfield><subfield code="0">(DE-588)4131193-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="2"><subfield code="a">Datentechnik</subfield><subfield code="0">(DE-588)4148885-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="3"><subfield code="a">Geisteswissenschaften</subfield><subfield code="0">(DE-588)4019838-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Geisteswissenschaften</subfield><subfield code="0">(DE-588)4019838-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Digitalisierung</subfield><subfield code="0">(DE-588)4123065-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="2"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Milligan, Ian</subfield><subfield code="d">1983-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1071079409</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weingart, Scott B.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1082324361</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martin, Kim</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="c">(ebook for institutions)</subfield><subfield code="z">9789811243042</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="c">(ebook for individuals)</subfield><subfield code="z">9789811243059</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033827811&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033827811</subfield></datafield></record></collection> |
id | DE-604.BV048449638 |
illustrated | Illustrated |
index_date | 2024-07-03T20:30:18Z |
indexdate | 2024-07-10T09:38:25Z |
institution | BVB |
isbn | 9789811243035 9789811243981 |
language | English |
lccn | 2021043872 |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033827811 |
oclc_num | 1311972187 |
open_access_boolean | |
owner | DE-210 DE-355 DE-BY-UBR DE-739 |
owner_facet | DE-210 DE-355 DE-BY-UBR DE-739 |
physical | xxvi, 278 Seiten Illustrationen 23 cm |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | World Scientific |
record_format | marc |
spelling | Graham, Shawn Verfasser (DE-588)1216269335 aut Exploring big historical data the historian's macroscope Shawn Graham (Carleton University, Canada), Ian Milligan (University of Waterloo, Canada), Scott B. Weingart (University of Notre Dame, USA), Kim Martin (University of Guelph, Canada) Second edition New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2022] © 2022 xxvi, 278 Seiten Illustrationen 23 cm txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index The joys of big data for historians -- The DH moment -- Data mining tools : techniques and visualizations -- Topic modeling : a hands-on adventure in big data -- Making your data legible : a basic introduction to visualizations -- Network analysis -- Networks in practice. "Every day, more and more kinds of historical data become available, opening exciting new avenues of inquiry but also new challenges. This updated and expanded book describes and demonstrates the ways these data can be explored to construct cultural heritage knowledge, for research and in teaching and learning. It helps humanities scholars to grasp Big Data in order to do their work, whether that means understanding the underlying algorithms at work in search engines or designing and using their own tools to process large amounts of information. Demonstrating what digital tools have to offer and also what 'digital' does to how we understand the past, the authors introduce the many different tools and developing approaches in Big Data for historical and humanistic scholarship, show how to use them, what to be wary of, and discuss the kinds of questions and new perspectives this new macroscopic perspective opens up. Originally authored 'live' online with ongoing feedback from the wider digital history community, Exploring Big Historical Data breaks new ground and sets the direction for the conversation into the future. Exploring Big Historical Data should be the go-to resource for undergraduate and graduate students confronted by a vast corpus of data, and researchers encountering these methods for the first time. It will also offer a helping hand to the interested individual seeking to make sense of genealogical data or digitized newspapers, and even the local historical society who are trying to see the value in digitizing their holdings"-- History Computer network resources Big data Historiography Methodology History Research Datenauswertung (DE-588)4131193-0 gnd rswk-swf Big Data (DE-588)4802620-7 gnd rswk-swf Geschichtswissenschaft (DE-588)4020535-6 gnd rswk-swf Methode (DE-588)4038971-6 gnd rswk-swf Digitalisierung (DE-588)4123065-6 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Geisteswissenschaften (DE-588)4019838-8 gnd rswk-swf Digital Humanities (DE-588)1038714850 gnd rswk-swf Datentechnik (DE-588)4148885-4 gnd rswk-swf Computing: Professional & Programming Big Data (DE-588)4802620-7 s Geschichtswissenschaft (DE-588)4020535-6 s DE-604 Digital Humanities (DE-588)1038714850 s Methode (DE-588)4038971-6 s Datenauswertung (DE-588)4131193-0 s Datentechnik (DE-588)4148885-4 s Geisteswissenschaften (DE-588)4019838-8 s Digitalisierung (DE-588)4123065-6 s Künstliche Intelligenz (DE-588)4033447-8 s Milligan, Ian 1983- Verfasser (DE-588)1071079409 aut Weingart, Scott B. Verfasser (DE-588)1082324361 aut Martin, Kim Verfasser aut Erscheint auch als Online-Ausgabe (ebook for institutions) 9789811243042 Erscheint auch als Online-Ausgabe (ebook for individuals) 9789811243059 Digitalisierung UB Regensburg - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033827811&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Graham, Shawn Milligan, Ian 1983- Weingart, Scott B. Martin, Kim Exploring big historical data the historian's macroscope History Computer network resources Big data Historiography Methodology History Research Datenauswertung (DE-588)4131193-0 gnd Big Data (DE-588)4802620-7 gnd Geschichtswissenschaft (DE-588)4020535-6 gnd Methode (DE-588)4038971-6 gnd Digitalisierung (DE-588)4123065-6 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Geisteswissenschaften (DE-588)4019838-8 gnd Digital Humanities (DE-588)1038714850 gnd Datentechnik (DE-588)4148885-4 gnd |
subject_GND | (DE-588)4131193-0 (DE-588)4802620-7 (DE-588)4020535-6 (DE-588)4038971-6 (DE-588)4123065-6 (DE-588)4033447-8 (DE-588)4019838-8 (DE-588)1038714850 (DE-588)4148885-4 |
title | Exploring big historical data the historian's macroscope |
title_auth | Exploring big historical data the historian's macroscope |
title_exact_search | Exploring big historical data the historian's macroscope |
title_exact_search_txtP | Exploring big historical data the historian's macroscope |
title_full | Exploring big historical data the historian's macroscope Shawn Graham (Carleton University, Canada), Ian Milligan (University of Waterloo, Canada), Scott B. Weingart (University of Notre Dame, USA), Kim Martin (University of Guelph, Canada) |
title_fullStr | Exploring big historical data the historian's macroscope Shawn Graham (Carleton University, Canada), Ian Milligan (University of Waterloo, Canada), Scott B. Weingart (University of Notre Dame, USA), Kim Martin (University of Guelph, Canada) |
title_full_unstemmed | Exploring big historical data the historian's macroscope Shawn Graham (Carleton University, Canada), Ian Milligan (University of Waterloo, Canada), Scott B. Weingart (University of Notre Dame, USA), Kim Martin (University of Guelph, Canada) |
title_short | Exploring big historical data |
title_sort | exploring big historical data the historian s macroscope |
title_sub | the historian's macroscope |
topic | History Computer network resources Big data Historiography Methodology History Research Datenauswertung (DE-588)4131193-0 gnd Big Data (DE-588)4802620-7 gnd Geschichtswissenschaft (DE-588)4020535-6 gnd Methode (DE-588)4038971-6 gnd Digitalisierung (DE-588)4123065-6 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Geisteswissenschaften (DE-588)4019838-8 gnd Digital Humanities (DE-588)1038714850 gnd Datentechnik (DE-588)4148885-4 gnd |
topic_facet | History Computer network resources Big data Historiography Methodology History Research Datenauswertung Big Data Geschichtswissenschaft Methode Digitalisierung Künstliche Intelligenz Geisteswissenschaften Digital Humanities Datentechnik |
url | http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033827811&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT grahamshawn exploringbighistoricaldatathehistoriansmacroscope AT milliganian exploringbighistoricaldatathehistoriansmacroscope AT weingartscottb exploringbighistoricaldatathehistoriansmacroscope AT martinkim exploringbighistoricaldatathehistoriansmacroscope |