The shapes of stories: sentiment analysis for narrative
Sentiment analysis has gained widespread adoption in many fields, but not-until now-in literary studies. Scholars have lacked a robust methodology that adapts the tool to the skills and questions central to literary scholars. Also lacking has been quantitative data to help the scholar choose between...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schriftenreihe: | Cambridge elements
|
Schlagworte: | |
Online-Zugang: | BSB01 UBG01 Volltext |
Zusammenfassung: | Sentiment analysis has gained widespread adoption in many fields, but not-until now-in literary studies. Scholars have lacked a robust methodology that adapts the tool to the skills and questions central to literary scholars. Also lacking has been quantitative data to help the scholar choose between the many models. Which model is best for which narrative, and why? By comparing over three dozen models, including the latest Deep Learning AI, the author details how to choose the correct model-or set of models-depending on the unique affective fingerprint of a narrative. The author also demonstrates how to combine a clustered close reading of textual cruxes in order to interpret a narrative. By analyzing a diverse and cross-cultural range of texts in a series of case studies, the Element highlights new insights into the many shapes of stories |
Beschreibung: | Title from publisher's bibliographic system (viewed on 25 Jul 2022) |
Beschreibung: | 1 Online-Ressource (115 Seiten) |
ISBN: | 9781009270403 |
DOI: | 10.1017/9781009270403 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048416773 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220822s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781009270403 |c Online |9 978-1-00-927040-3 | ||
024 | 7 | |a 10.1017/9781009270403 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009270403 | ||
035 | |a (OCoLC)1344247848 | ||
035 | |a (DE-599)BVBBV048416773 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 | ||
082 | 0 | |a 801.950285 | |
100 | 1 | |a Elkins, Katherine |d ca. 20./21. Jh. |0 (DE-588)1266033971 |4 aut | |
245 | 1 | 0 | |a The shapes of stories |b sentiment analysis for narrative |c Katherine Elkins |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (115 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Cambridge elements | |
500 | |a Title from publisher's bibliographic system (viewed on 25 Jul 2022) | ||
520 | |a Sentiment analysis has gained widespread adoption in many fields, but not-until now-in literary studies. Scholars have lacked a robust methodology that adapts the tool to the skills and questions central to literary scholars. Also lacking has been quantitative data to help the scholar choose between the many models. Which model is best for which narrative, and why? By comparing over three dozen models, including the latest Deep Learning AI, the author details how to choose the correct model-or set of models-depending on the unique affective fingerprint of a narrative. The author also demonstrates how to combine a clustered close reading of textual cruxes in order to interpret a narrative. By analyzing a diverse and cross-cultural range of texts in a series of case studies, the Element highlights new insights into the many shapes of stories | ||
650 | 4 | |a Criticism / Data processing | |
650 | 4 | |a Sentiment analysis | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-00-927039-7 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009270403 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033795142 | ||
966 | e | |u https://doi.org/10.1017/9781009270403 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009270403 |l UBG01 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184330146152448 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Elkins, Katherine ca. 20./21. Jh |
author_GND | (DE-588)1266033971 |
author_facet | Elkins, Katherine ca. 20./21. Jh |
author_role | aut |
author_sort | Elkins, Katherine ca. 20./21. Jh |
author_variant | k e ke |
building | Verbundindex |
bvnumber | BV048416773 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009270403 (OCoLC)1344247848 (DE-599)BVBBV048416773 |
dewey-full | 801.950285 |
dewey-hundreds | 800 - Literature (Belles-lettres) and rhetoric |
dewey-ones | 801 - Philosophy and theory |
dewey-raw | 801.950285 |
dewey-search | 801.950285 |
dewey-sort | 3801.950285 |
dewey-tens | 800 - Literature (Belles-lettres) and rhetoric |
discipline | Literaturwissenschaft |
discipline_str_mv | Literaturwissenschaft |
doi_str_mv | 10.1017/9781009270403 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02400nmm a2200409zc 4500</leader><controlfield tag="001">BV048416773</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220822s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009270403</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-927040-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009270403</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009270403</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1344247848</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048416773</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">801.950285</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Elkins, Katherine</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1266033971</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The shapes of stories</subfield><subfield code="b">sentiment analysis for narrative</subfield><subfield code="c">Katherine Elkins</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (115 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Cambridge elements</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 25 Jul 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Sentiment analysis has gained widespread adoption in many fields, but not-until now-in literary studies. Scholars have lacked a robust methodology that adapts the tool to the skills and questions central to literary scholars. Also lacking has been quantitative data to help the scholar choose between the many models. Which model is best for which narrative, and why? By comparing over three dozen models, including the latest Deep Learning AI, the author details how to choose the correct model-or set of models-depending on the unique affective fingerprint of a narrative. The author also demonstrates how to combine a clustered close reading of textual cruxes in order to interpret a narrative. By analyzing a diverse and cross-cultural range of texts in a series of case studies, the Element highlights new insights into the many shapes of stories</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Criticism / Data processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sentiment analysis</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-00-927039-7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009270403</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033795142</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009270403</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009270403</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048416773 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:26:41Z |
indexdate | 2024-07-10T09:37:37Z |
institution | BVB |
isbn | 9781009270403 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033795142 |
oclc_num | 1344247848 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (115 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
series2 | Cambridge elements |
spelling | Elkins, Katherine ca. 20./21. Jh. (DE-588)1266033971 aut The shapes of stories sentiment analysis for narrative Katherine Elkins Cambridge Cambridge University Press 2022 1 Online-Ressource (115 Seiten) txt rdacontent c rdamedia cr rdacarrier Cambridge elements Title from publisher's bibliographic system (viewed on 25 Jul 2022) Sentiment analysis has gained widespread adoption in many fields, but not-until now-in literary studies. Scholars have lacked a robust methodology that adapts the tool to the skills and questions central to literary scholars. Also lacking has been quantitative data to help the scholar choose between the many models. Which model is best for which narrative, and why? By comparing over three dozen models, including the latest Deep Learning AI, the author details how to choose the correct model-or set of models-depending on the unique affective fingerprint of a narrative. The author also demonstrates how to combine a clustered close reading of textual cruxes in order to interpret a narrative. By analyzing a diverse and cross-cultural range of texts in a series of case studies, the Element highlights new insights into the many shapes of stories Criticism / Data processing Sentiment analysis Erscheint auch als Druck-Ausgabe 978-1-00-927039-7 https://doi.org/10.1017/9781009270403 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Elkins, Katherine ca. 20./21. Jh The shapes of stories sentiment analysis for narrative Criticism / Data processing Sentiment analysis |
title | The shapes of stories sentiment analysis for narrative |
title_auth | The shapes of stories sentiment analysis for narrative |
title_exact_search | The shapes of stories sentiment analysis for narrative |
title_exact_search_txtP | The shapes of stories sentiment analysis for narrative |
title_full | The shapes of stories sentiment analysis for narrative Katherine Elkins |
title_fullStr | The shapes of stories sentiment analysis for narrative Katherine Elkins |
title_full_unstemmed | The shapes of stories sentiment analysis for narrative Katherine Elkins |
title_short | The shapes of stories |
title_sort | the shapes of stories sentiment analysis for narrative |
title_sub | sentiment analysis for narrative |
topic | Criticism / Data processing Sentiment analysis |
topic_facet | Criticism / Data processing Sentiment analysis |
url | https://doi.org/10.1017/9781009270403 |
work_keys_str_mv | AT elkinskatherine theshapesofstoriessentimentanalysisfornarrative |