Delaunay Configuration B-Splines:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Passau
April 2022
|
Schlagworte: | |
Online-Zugang: | kostenfrei kostenfrei Inhaltsverzeichnis |
Beschreibung: | xxiii, 223 Seiten Illustrationen |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048412485 | ||
003 | DE-604 | ||
005 | 20220901 | ||
007 | t | ||
008 | 220817s2022 a||| m||| 00||| eng d | ||
035 | |a (OCoLC)1344268606 | ||
035 | |a (DE-599)BVBBV048412485 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |a SK 470 |0 (DE-625)143241: |2 rvk | ||
100 | 1 | |a Schlenker, Florian |e Verfasser |4 aut | |
245 | 1 | 0 | |a Delaunay Configuration B-Splines |c Florian Schenker |
264 | 1 | |a Passau |c April 2022 | |
300 | |a xxiii, 223 Seiten |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Universität Passau |d 2022 | ||
650 | 0 | 7 | |a Spline |0 (DE-588)4182391-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Delaunay-Triangulierung |0 (DE-588)4628829-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Spline-Raum |0 (DE-588)4626863-7 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Delaunay-Triangulierung |0 (DE-588)4628829-6 |D s |
689 | 0 | 1 | |a Spline-Raum |0 (DE-588)4626863-7 |D s |
689 | 0 | 2 | |a Spline |0 (DE-588)4182391-6 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o urn:nbn:de:bvb:739-opus4-11225 |
856 | 4 | 1 | |u https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/1122 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 1 | |u https://nbn-resolving.de/urn:nbn:de:bvb:739-opus4-11225 |x Resolving-System |z kostenfrei |3 Volltext |
856 | 4 | 2 | |m Digitalisierung UB Passau - ADAM Catalogue Enrichment |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033790916&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033790916 |
Datensatz im Suchindex
_version_ | 1804184322567045120 |
---|---|
adam_text | Contents 1 Introduction 1.1 Motivation................................................................................................. 1.2 1.3 1 1 Contributions........................................................................................... 4 Structure .................................................................................................. 5 2 Univariate Splines 2.1 From Polynomials to Splines................................................................... 7 7 2.1.1 2.1.2 2.1.3 Polynomials.................................................................................. 7 Piecewise Polynomials................................................................ 10 Piecewise Linear Interpolation.................................................... 11 2.1.4 Cubic Spline Interpolation.......................................................... 2.2 Definition of Univariate Splines............................................................ 13 16 2.2.1 The Spline Space......................................................................... 16 Divided Differences...................................................................... B-Splines...................................................................................... 2.3 Properties of Univariate Splines............................................................ 2.3.1 Properties of B-Splines................................................................ 2.3.2 Continuity and Derivatives.......................................................... 17 19 2.2.2 2.2.3 22 22 23 2.3.3 Polynomial Reproduction
.......................................................... 25 2.3.4 Approximation............................................................................ 28 2.3.5 Knot Insertion............................................................................... 30 2.3.6 Condition of the В-Spline Basis................................................ 30 3 Simplex Splines 33 3.1 General Multivariate Concepts............................................................... 33 3.1.1 Simplices and Barycentric Coordinates.................................... 33 3.1.2 Multivariate Polynomials............................................................. 38 3.2 Definition of Simplex Splines ................................................................. 3.2.1 Univariate Geometric Interpretation ....................................... 39 39 3.2.2 Multivariate Generalization....................................................... 42 3.3 Properties of Simplex Splines................................................................. 44 xi
3.4 Examples of Simplex Splines.................................................................... 4 Multivariate Spline Spaces 4.1 48 53 Constructing Multivariate Spline Spaces............................................. 53 4.1.1 Generalizing the В-Spline Basis................................................. 53 4.1.2 The Fundamental Problem.......................................................... 54 DMS-Splines ........................................................................................... 4.2.1 A Geometric Approach................................................................ 56 57 58 4.2.3 A Combinatorial Approach.......................................................... В-Patches and B-Weights............................................................. 4.2.4 В-Weights and Simplex Splines................................................. 64 4.2.5 Definition and Properties of DMS-Splines.................................. 65 4.2.6 DMS-Splines and the Fundamental Problem........................... 4.3 Delaunay Configuration B-Splines......................................................... 69 70 4.2 4.2.2 4.4 4.3.1 4.3.2 Voronoi Diagrams......................................................................... 70 Delaunay Triangulations............................................................. 72 4.3.3 Duality Relations.......................................................................... 74 4.3.4 Higher-Order Voronoi Diagrams................................................. 77 4.3.5 Delaunay
Configurations............................................................. 79 4.3.6 Elimination of Duplicates .......................................................... 84 4.3.7 DCB-Splines and the Fundamental Problem........................... 88 4.3.8 Related Work................................................................................. 91 Other Approaches..................................................................................... 92 4.4.1 Tensor Product Splines................................................................. 92 4.4.2 Polyhedral Splines and Box Splines............................................ 94 4.4.3 Generalized Delaunay Configurations......................................... 94 4.4.4 Splines on Triangulations........................................................... 95 5 Local Finiteness 5.1 5.2 62 97 Preliminaries........................................................................................... 97 5.1.1 Problem Statement........................................................................ 97 5.1.2 Prerequisites ................................................................................. 99 Dens^y Cones............................................................................................. 107 5.2.1 Definition and Properties of Cones.............................................. 108 5.2.2 Density Description Using Cones ................................................. Ill 5.2.3 Uniformity of Density Cones.......................................................... 113 5.3 Geometry of Conesand
Balls....................................................................... 117 5.3.1 Geometry of Balls............................................................................. 117 5.3.2 Interactionsof Cones and Balls..................................................... 123 xii
5.4 Local Finiteness Theorem ......................................................................... 129 5.4.1 Generalization to Compact Sets....................................................129 5.4.2 Main Result..................................................................................... 132 5.5 Consequences.............................................................................................. 134 5.5.1 Corollaries.........................................................................................134 5.5.2 Local Finiteness Condition............................................................. 136 6 Knot Insertion 6.1 6.2 143 Preliminaries.............................................................................................. 143 Necessary Criterion..................................................................................... 146 6.2.1 Limits of Differentiability ............................................................. 146 6.2.2 Definition of the Criterion............................................................. 150 6.3 Sufficiency of the Criterion......................................................................... 153 6.3.1 Knot Insertion Formula................................................................... 154 6.3.2 Critical Configurations................................................................... 156 6.3.3 Companion Configurations............................................................. 169 7 Approximation and Condition 195 7.1 Approximation
...........................................................................................195 7.1.1 Multivariate Schoenberg Operator ............................................. 196 7.1.2 Approximation Quality.................................................................. 197 7.2 Condition.................................................................................................... 201 7.2.1 Bounding the Spline Value............................................................ 201 7.2.2 8 Conclusion Bounding the Coefficients............................................................ 202 207 8.1 Summary..................................................................................................... 207 8.2 Practical Considerations............................................................................ 208 8.2.1 Efficient Evaluation of Simplex Splines....................................... 208 8.2.2 Degenerate and Finite Knot Sets ................................................ 210 8.2.3 Computing Delaunay Configurations.......................................... 211 8.3 Future Research Topics............................................................................... 213 Bibliography 217 ί xiii
|
adam_txt |
Contents 1 Introduction 1.1 Motivation. 1.2 1.3 1 1 Contributions. 4 Structure . 5 2 Univariate Splines 2.1 From Polynomials to Splines. 7 7 2.1.1 2.1.2 2.1.3 Polynomials. 7 Piecewise Polynomials. 10 Piecewise Linear Interpolation. 11 2.1.4 Cubic Spline Interpolation. 2.2 Definition of Univariate Splines. 13 16 2.2.1 The Spline Space. 16 Divided Differences. B-Splines. 2.3 Properties of Univariate Splines. 2.3.1 Properties of B-Splines. 2.3.2 Continuity and Derivatives. 17 19 2.2.2 2.2.3 22 22 23 2.3.3 Polynomial Reproduction
. 25 2.3.4 Approximation. 28 2.3.5 Knot Insertion. 30 2.3.6 Condition of the В-Spline Basis. 30 3 Simplex Splines 33 3.1 General Multivariate Concepts. 33 3.1.1 Simplices and Barycentric Coordinates. 33 3.1.2 Multivariate Polynomials. 38 3.2 Definition of Simplex Splines . 3.2.1 Univariate Geometric Interpretation . 39 39 3.2.2 Multivariate Generalization. 42 3.3 Properties of Simplex Splines. 44 xi
3.4 Examples of Simplex Splines. 4 Multivariate Spline Spaces 4.1 48 53 Constructing Multivariate Spline Spaces. 53 4.1.1 Generalizing the В-Spline Basis. 53 4.1.2 The Fundamental Problem. 54 DMS-Splines . 4.2.1 A Geometric Approach. 56 57 58 4.2.3 A Combinatorial Approach. В-Patches and B-Weights. 4.2.4 В-Weights and Simplex Splines. 64 4.2.5 Definition and Properties of DMS-Splines. 65 4.2.6 DMS-Splines and the Fundamental Problem. 4.3 Delaunay Configuration B-Splines. 69 70 4.2 4.2.2 4.4 4.3.1 4.3.2 Voronoi Diagrams. 70 Delaunay Triangulations. 72 4.3.3 Duality Relations. 74 4.3.4 Higher-Order Voronoi Diagrams. 77 4.3.5 Delaunay
Configurations. 79 4.3.6 Elimination of Duplicates . 84 4.3.7 DCB-Splines and the Fundamental Problem. 88 4.3.8 Related Work. 91 Other Approaches. 92 4.4.1 Tensor Product Splines. 92 4.4.2 Polyhedral Splines and Box Splines. 94 4.4.3 Generalized Delaunay Configurations. 94 4.4.4 Splines on Triangulations. 95 5 Local Finiteness 5.1 5.2 62 97 Preliminaries. 97 5.1.1 Problem Statement. 97 5.1.2 Prerequisites . 99 Dens^y Cones. 107 5.2.1 Definition and Properties of Cones. 108 5.2.2 Density Description Using Cones . Ill 5.2.3 Uniformity of Density Cones. 113 5.3 Geometry of Conesand
Balls. 117 5.3.1 Geometry of Balls. 117 5.3.2 Interactionsof Cones and Balls. 123 xii
5.4 Local Finiteness Theorem . 129 5.4.1 Generalization to Compact Sets.129 5.4.2 Main Result. 132 5.5 Consequences. 134 5.5.1 Corollaries.134 5.5.2 Local Finiteness Condition. 136 6 Knot Insertion 6.1 6.2 143 Preliminaries. 143 Necessary Criterion. 146 6.2.1 Limits of Differentiability . 146 6.2.2 Definition of the Criterion. 150 6.3 Sufficiency of the Criterion. 153 6.3.1 Knot Insertion Formula. 154 6.3.2 Critical Configurations. 156 6.3.3 Companion Configurations. 169 7 Approximation and Condition 195 7.1 Approximation
.195 7.1.1 Multivariate Schoenberg Operator . 196 7.1.2 Approximation Quality. 197 7.2 Condition. 201 7.2.1 Bounding the Spline Value. 201 7.2.2 8 Conclusion Bounding the Coefficients. 202 207 8.1 Summary. 207 8.2 Practical Considerations. 208 8.2.1 Efficient Evaluation of Simplex Splines. 208 8.2.2 Degenerate and Finite Knot Sets . 210 8.2.3 Computing Delaunay Configurations. 211 8.3 Future Research Topics. 213 Bibliography 217 ί xiii |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Schlenker, Florian |
author_facet | Schlenker, Florian |
author_role | aut |
author_sort | Schlenker, Florian |
author_variant | f s fs |
building | Verbundindex |
bvnumber | BV048412485 |
classification_rvk | SK 470 |
collection | ebook |
ctrlnum | (OCoLC)1344268606 (DE-599)BVBBV048412485 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01957nam a2200421 c 4500</leader><controlfield tag="001">BV048412485</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220901 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220817s2022 a||| m||| 00||| eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1344268606</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048412485</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 470</subfield><subfield code="0">(DE-625)143241:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schlenker, Florian</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Delaunay Configuration B-Splines</subfield><subfield code="c">Florian Schenker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Passau</subfield><subfield code="c">April 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiii, 223 Seiten</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Universität Passau</subfield><subfield code="d">2022</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline</subfield><subfield code="0">(DE-588)4182391-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Delaunay-Triangulierung</subfield><subfield code="0">(DE-588)4628829-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Spline-Raum</subfield><subfield code="0">(DE-588)4626863-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Delaunay-Triangulierung</subfield><subfield code="0">(DE-588)4628829-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Spline-Raum</subfield><subfield code="0">(DE-588)4626863-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Spline</subfield><subfield code="0">(DE-588)4182391-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">urn:nbn:de:bvb:739-opus4-11225</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/1122</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://nbn-resolving.de/urn:nbn:de:bvb:739-opus4-11225</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Passau - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033790916&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033790916</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV048412485 |
illustrated | Illustrated |
index_date | 2024-07-03T20:25:21Z |
indexdate | 2024-07-10T09:37:30Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033790916 |
oclc_num | 1344268606 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | xxiii, 223 Seiten Illustrationen |
psigel | ebook |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
record_format | marc |
spelling | Schlenker, Florian Verfasser aut Delaunay Configuration B-Splines Florian Schenker Passau April 2022 xxiii, 223 Seiten Illustrationen txt rdacontent n rdamedia nc rdacarrier Dissertation Universität Passau 2022 Spline (DE-588)4182391-6 gnd rswk-swf Delaunay-Triangulierung (DE-588)4628829-6 gnd rswk-swf Spline-Raum (DE-588)4626863-7 gnd rswk-swf (DE-588)4113937-9 Hochschulschrift gnd-content Delaunay-Triangulierung (DE-588)4628829-6 s Spline-Raum (DE-588)4626863-7 s Spline (DE-588)4182391-6 s DE-604 Erscheint auch als Online-Ausgabe urn:nbn:de:bvb:739-opus4-11225 https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/1122 Verlag kostenfrei Volltext https://nbn-resolving.de/urn:nbn:de:bvb:739-opus4-11225 Resolving-System kostenfrei Volltext Digitalisierung UB Passau - ADAM Catalogue Enrichment application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033790916&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Schlenker, Florian Delaunay Configuration B-Splines Spline (DE-588)4182391-6 gnd Delaunay-Triangulierung (DE-588)4628829-6 gnd Spline-Raum (DE-588)4626863-7 gnd |
subject_GND | (DE-588)4182391-6 (DE-588)4628829-6 (DE-588)4626863-7 (DE-588)4113937-9 |
title | Delaunay Configuration B-Splines |
title_auth | Delaunay Configuration B-Splines |
title_exact_search | Delaunay Configuration B-Splines |
title_exact_search_txtP | Delaunay Configuration B-Splines |
title_full | Delaunay Configuration B-Splines Florian Schenker |
title_fullStr | Delaunay Configuration B-Splines Florian Schenker |
title_full_unstemmed | Delaunay Configuration B-Splines Florian Schenker |
title_short | Delaunay Configuration B-Splines |
title_sort | delaunay configuration b splines |
topic | Spline (DE-588)4182391-6 gnd Delaunay-Triangulierung (DE-588)4628829-6 gnd Spline-Raum (DE-588)4626863-7 gnd |
topic_facet | Spline Delaunay-Triangulierung Spline-Raum Hochschulschrift |
url | https://opus4.kobv.de/opus4-uni-passau/frontdoor/index/index/docId/1122 https://nbn-resolving.de/urn:nbn:de:bvb:739-opus4-11225 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033790916&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT schlenkerflorian delaunayconfigurationbsplines |