Calibration of machine learning based hadronic tagging in preparation for a Vcb measurement and clustering of kinematic distributions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
München
2022
|
Schlagworte: | |
Online-Zugang: | Volltext Volltext |
Beschreibung: | 266 Seiten Illustrationen, Diagramme |
DOI: | 10.5282/edoc.30193 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048400521 | ||
003 | DE-604 | ||
005 | 20220810 | ||
007 | t | ||
008 | 220810s2022 gw a||| m||| 00||| eng d | ||
015 | |a 22,O09 |2 dnb | ||
035 | |a (OCoLC)1344249583 | ||
035 | |a (DE-599)BVBBV048400521 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |8 3\p |a eng | |
044 | |a gw |c XA-DE-BY | ||
049 | |a DE-384 |a DE-473 |a DE-703 |a DE-1051 |a DE-824 |a DE-29 |a DE-12 |a DE-91 |a DE-19 |a DE-1049 |a DE-92 |a DE-739 |a DE-898 |a DE-355 |a DE-706 |a DE-20 |a DE-1102 |a DE-860 |a DE-2174 | ||
084 | |8 1\p |a 539.7216 |2 23ksdnb | ||
084 | |8 2\p |a 530 |2 23sdnb | ||
100 | 1 | |a Lieret, Kilian |d 1993- |e Verfasser |0 (DE-588)1263803350 |4 aut | |
245 | 1 | 0 | |a Calibration of machine learning based hadronic tagging in preparation for a Vcb measurement and clustering of kinematic distributions |c Kilian Adriano Lieret |
246 | 1 | 3 | |a Kalibration eines Machine-Learning-Algorithmus für hadronisches Tagging zur Vorbereitung einer Vcb-Messung und Clustering von kinematischen Verteilungen |
264 | 1 | |a München |c 2022 | |
300 | |a 266 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c München, Ludwig-Maximilians-Universität |d 2022 | ||
650 | 0 | 7 | |8 4\p |a Measurement |0 (DLC)sh85083608 |0 http://id.loc.gov/authorities/subjects/sh85083608 |2 lcsh |
650 | 0 | 7 | |8 5\p |a Machine learning |0 (DLC)sh85079324 |0 http://id.loc.gov/authorities/subjects/sh85079324 |2 lcsh |
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |o urn:nbn:de:bvb:19-301933 |o 10.5282/edoc.30193 |
856 | 4 | 1 | |u https://doi.org/10.5282/edoc.30193 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 1 | |u https://nbn-resolving.org/urn:nbn:de:bvb:19-301933 |x Resolving-System |z kostenfrei |3 Volltext |
912 | |a ebook | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033779085 | ||
883 | 0 | |8 1\p |a aepkn |c 0,82922 |d 20220802 |q DE-101 |u https://d-nb.info/provenance/plan#aepkn | |
883 | 0 | |8 2\p |a emasg |c 1,00000 |d 20220802 |q DE-101 |u https://d-nb.info/provenance/plan#emasg | |
883 | 1 | |8 3\p |a npi |d 20220801 |q DE-101 |u https://d-nb.info/provenance/plan#npi | |
883 | 0 | |8 4\p |a aeplcsh |c 0,02941 |d 20220802 |q DE-101 |u https://d-nb.info/provenance/plan#aeplcsh | |
883 | 0 | |8 5\p |a aeplcsh |c 0,00840 |d 20220802 |q DE-101 |u https://d-nb.info/provenance/plan#aeplcsh |
Datensatz im Suchindex
_version_ | 1804184298037706752 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Lieret, Kilian 1993- |
author_GND | (DE-588)1263803350 |
author_facet | Lieret, Kilian 1993- |
author_role | aut |
author_sort | Lieret, Kilian 1993- |
author_variant | k l kl |
building | Verbundindex |
bvnumber | BV048400521 |
collection | ebook |
ctrlnum | (OCoLC)1344249583 (DE-599)BVBBV048400521 |
doi_str_mv | 10.5282/edoc.30193 |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02378nam a2200457zc 4500</leader><controlfield tag="001">BV048400521</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220810 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220810s2022 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,O09</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1344249583</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048400521</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BY</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-12</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-2174</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">539.7216</subfield><subfield code="2">23ksdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">530</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lieret, Kilian</subfield><subfield code="d">1993-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1263803350</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Calibration of machine learning based hadronic tagging in preparation for a Vcb measurement and clustering of kinematic distributions</subfield><subfield code="c">Kilian Adriano Lieret</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Kalibration eines Machine-Learning-Algorithmus für hadronisches Tagging zur Vorbereitung einer Vcb-Messung und Clustering von kinematischen Verteilungen</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">München</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">266 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">München, Ludwig-Maximilians-Universität</subfield><subfield code="d">2022</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">4\p</subfield><subfield code="a">Measurement</subfield><subfield code="0">(DLC)sh85083608</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85083608</subfield><subfield code="2">lcsh</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="8">5\p</subfield><subfield code="a">Machine learning</subfield><subfield code="0">(DLC)sh85079324</subfield><subfield code="0">http://id.loc.gov/authorities/subjects/sh85079324</subfield><subfield code="2">lcsh</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="o">urn:nbn:de:bvb:19-301933</subfield><subfield code="o">10.5282/edoc.30193</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.5282/edoc.30193</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://nbn-resolving.org/urn:nbn:de:bvb:19-301933</subfield><subfield code="x">Resolving-System</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ebook</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033779085</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">aepkn</subfield><subfield code="c">0,82922</subfield><subfield code="d">20220802</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#aepkn</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">emasg</subfield><subfield code="c">1,00000</subfield><subfield code="d">20220802</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#emasg</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">npi</subfield><subfield code="d">20220801</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#npi</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">aeplcsh</subfield><subfield code="c">0,02941</subfield><subfield code="d">20220802</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#aeplcsh</subfield></datafield><datafield tag="883" ind1="0" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">aeplcsh</subfield><subfield code="c">0,00840</subfield><subfield code="d">20220802</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#aeplcsh</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV048400521 |
illustrated | Illustrated |
index_date | 2024-07-03T20:22:53Z |
indexdate | 2024-07-10T09:37:07Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033779085 |
oclc_num | 1344249583 |
open_access_boolean | 1 |
owner | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
owner_facet | DE-384 DE-473 DE-BY-UBG DE-703 DE-1051 DE-824 DE-29 DE-12 DE-91 DE-BY-TUM DE-19 DE-BY-UBM DE-1049 DE-92 DE-739 DE-898 DE-BY-UBR DE-355 DE-BY-UBR DE-706 DE-20 DE-1102 DE-860 DE-2174 |
physical | 266 Seiten Illustrationen, Diagramme |
psigel | ebook |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
record_format | marc |
spelling | Lieret, Kilian 1993- Verfasser (DE-588)1263803350 aut Calibration of machine learning based hadronic tagging in preparation for a Vcb measurement and clustering of kinematic distributions Kilian Adriano Lieret Kalibration eines Machine-Learning-Algorithmus für hadronisches Tagging zur Vorbereitung einer Vcb-Messung und Clustering von kinematischen Verteilungen München 2022 266 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Dissertation München, Ludwig-Maximilians-Universität 2022 4\p Measurement (DLC)sh85083608 http://id.loc.gov/authorities/subjects/sh85083608 lcsh 5\p Machine learning (DLC)sh85079324 http://id.loc.gov/authorities/subjects/sh85079324 lcsh (DE-588)4113937-9 Hochschulschrift gnd-content Erscheint auch als Online-Ausgabe urn:nbn:de:bvb:19-301933 10.5282/edoc.30193 https://doi.org/10.5282/edoc.30193 Verlag kostenfrei Volltext https://nbn-resolving.org/urn:nbn:de:bvb:19-301933 Resolving-System kostenfrei Volltext 1\p aepkn 0,82922 20220802 DE-101 https://d-nb.info/provenance/plan#aepkn 2\p emasg 1,00000 20220802 DE-101 https://d-nb.info/provenance/plan#emasg 3\p npi 20220801 DE-101 https://d-nb.info/provenance/plan#npi 4\p aeplcsh 0,02941 20220802 DE-101 https://d-nb.info/provenance/plan#aeplcsh 5\p aeplcsh 0,00840 20220802 DE-101 https://d-nb.info/provenance/plan#aeplcsh |
spellingShingle | Lieret, Kilian 1993- Calibration of machine learning based hadronic tagging in preparation for a Vcb measurement and clustering of kinematic distributions 4\p Measurement (DLC)sh85083608 http://id.loc.gov/authorities/subjects/sh85083608 lcsh 5\p Machine learning (DLC)sh85079324 http://id.loc.gov/authorities/subjects/sh85079324 lcsh |
subject_GND | (DLC)sh85083608 http://id.loc.gov/authorities/subjects/sh85083608 (DLC)sh85079324 http://id.loc.gov/authorities/subjects/sh85079324 (DE-588)4113937-9 |
title | Calibration of machine learning based hadronic tagging in preparation for a Vcb measurement and clustering of kinematic distributions |
title_alt | Kalibration eines Machine-Learning-Algorithmus für hadronisches Tagging zur Vorbereitung einer Vcb-Messung und Clustering von kinematischen Verteilungen |
title_auth | Calibration of machine learning based hadronic tagging in preparation for a Vcb measurement and clustering of kinematic distributions |
title_exact_search | Calibration of machine learning based hadronic tagging in preparation for a Vcb measurement and clustering of kinematic distributions |
title_exact_search_txtP | Calibration of machine learning based hadronic tagging in preparation for a Vcb measurement and clustering of kinematic distributions |
title_full | Calibration of machine learning based hadronic tagging in preparation for a Vcb measurement and clustering of kinematic distributions Kilian Adriano Lieret |
title_fullStr | Calibration of machine learning based hadronic tagging in preparation for a Vcb measurement and clustering of kinematic distributions Kilian Adriano Lieret |
title_full_unstemmed | Calibration of machine learning based hadronic tagging in preparation for a Vcb measurement and clustering of kinematic distributions Kilian Adriano Lieret |
title_short | Calibration of machine learning based hadronic tagging in preparation for a Vcb measurement and clustering of kinematic distributions |
title_sort | calibration of machine learning based hadronic tagging in preparation for a vcb measurement and clustering of kinematic distributions |
topic | 4\p Measurement (DLC)sh85083608 http://id.loc.gov/authorities/subjects/sh85083608 lcsh 5\p Machine learning (DLC)sh85079324 http://id.loc.gov/authorities/subjects/sh85079324 lcsh |
topic_facet | Measurement Machine learning Hochschulschrift |
url | https://doi.org/10.5282/edoc.30193 https://nbn-resolving.org/urn:nbn:de:bvb:19-301933 |
work_keys_str_mv | AT lieretkilian calibrationofmachinelearningbasedhadronictagginginpreparationforavcbmeasurementandclusteringofkinematicdistributions AT lieretkilian kalibrationeinesmachinelearningalgorithmusfurhadronischestaggingzurvorbereitungeinervcbmessungundclusteringvonkinematischenverteilungen |