Data Science in Healthcare:
Data science is an interdisciplinary field that applies numerous techniques, such as machine learning, neural networks, and deep learning, to create value based on extracting knowledge and insights from available data. Advances in data science have a significant impact on healthcare. While advances...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
MDPI - Multidisciplinary Digital Publishing Institute
2022
|
Schlagworte: | |
Online-Zugang: | kostenfrei |
Zusammenfassung: | Data science is an interdisciplinary field that applies numerous techniques, such as machine learning, neural networks, and deep learning, to create value based on extracting knowledge and insights from available data. Advances in data science have a significant impact on healthcare. While advances in the sharing of medical information result in better and earlier diagnoses as well as more patient-tailored treatments, information management is also affected by trends such as increased patient centricity (with shared decision making), self-care (e.g., using wearables), and integrated care delivery. The delivery of health services is being revolutionized through the sharing and integration of health data across organizational boundaries. Via data science, researchers can deliver new approaches to merge, analyze, and process complex data and gain more actionable insights, understanding, and knowledge at the individual and population levels. This Special Issue focuses on how data science is used in healthcare (e.g., through predictive modeling) and on related topics, such as data sharing and data management |
Beschreibung: | 1 Online-Ressource (VII, 199 Seiten) Illustrationen, Diagramme, Karten |
ISBN: | 9783036539843 9783036539836 |
Internformat
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV048394312 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220804s2022 xx a||| o|||| 00||| eng d | ||
020 | |a 9783036539843 |9 9783036539843 | ||
020 | |a 9783036539836 |9 9783036539836 | ||
020 | |a 9783036539843 |9 9783036539843 | ||
035 | |a (OCoLC)1339066378 | ||
035 | |a (DE-599)HEB497484463 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-210 |a DE-521 |a DE-1102 |a DE-1046 |a DE-1028 |a DE-1050 |a DE-573 |a DE-M347 |a DE-92 |a DE-1051 |a DE-898 |a DE-859 |a DE-860 |a DE-1049 |a DE-861 |a DE-863 |a DE-862 |a DE-Re13 |a DE-Y3 |a DE-255 |a DE-Y7 |a DE-Y2 |a DE-70 |a DE-2174 |a DE-127 |a DE-22 |a DE-155 |a DE-91 |a DE-384 |a DE-473 |a DE-19 |a DE-355 |a DE-703 |a DE-20 |a DE-706 |a DE-824 |a DE-29 |a DE-739 | ||
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a XF 1277 |0 (DE-625)152745: |2 rvk | ||
245 | 1 | 0 | |a Data Science in Healthcare |
264 | 1 | |a Basel |b MDPI - Multidisciplinary Digital Publishing Institute |c 2022 | |
264 | 2 | |a The Hague |b OAPEN FOUNDATION | |
300 | |a 1 Online-Ressource (VII, 199 Seiten) |b Illustrationen, Diagramme, Karten | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | 3 | |a Data science is an interdisciplinary field that applies numerous techniques, such as machine learning, neural networks, and deep learning, to create value based on extracting knowledge and insights from available data. Advances in data science have a significant impact on healthcare. While advances in the sharing of medical information result in better and earlier diagnoses as well as more patient-tailored treatments, information management is also affected by trends such as increased patient centricity (with shared decision making), self-care (e.g., using wearables), and integrated care delivery. The delivery of health services is being revolutionized through the sharing and integration of health data across organizational boundaries. Via data science, researchers can deliver new approaches to merge, analyze, and process complex data and gain more actionable insights, understanding, and knowledge at the individual and population levels. This Special Issue focuses on how data science is used in healthcare (e.g., through predictive modeling) and on related topics, such as data sharing and data management | |
650 | 0 | 7 | |a Datenaustausch |0 (DE-588)4227289-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gesundheitswesen |0 (DE-588)4020775-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Medizinische Informatik |0 (DE-588)4038261-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Data Science |0 (DE-588)1140936166 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Datenmanagement |0 (DE-588)4213132-7 |2 gnd |9 rswk-swf |
653 | |a data sharing | ||
653 | |a data management | ||
653 | |a data science | ||
653 | |a big data | ||
653 | |a healthcare | ||
653 | |a depression | ||
653 | |a psychological treatment | ||
653 | |a task sharing | ||
653 | |a primary care | ||
653 | |a pilot study | ||
653 | |a non-specialist health worker | ||
653 | |a training | ||
653 | |a digital technology | ||
653 | |a mental health | ||
653 | |a COVID-19 | ||
653 | |a SARS-CoV-2 | ||
653 | |a pneumonia | ||
653 | |a computed tomography | ||
653 | |a case fatality rate | ||
653 | |a social distancing | ||
653 | |a smoking | ||
653 | |a metabolically healthy obese phenotype | ||
653 | |a metabolic syndrome | ||
653 | |a obesity | ||
653 | |a coronavirus | ||
653 | |a machine learning | ||
653 | |a social media | ||
653 | |a apache spark | ||
653 | |a Twitter | ||
653 | |a arteriovenous fistula | ||
653 | |a end stage kidney disease | ||
653 | |a dialysis | ||
653 | |a kidney failure | ||
653 | |a risk prediction | ||
653 | |a naïve Bayes classifiers | ||
653 | |a precision medicine | ||
653 | |a machine learning models | ||
653 | |a data exploratory techniques | ||
653 | |a breast cancer diagnosis | ||
653 | |a tumors classification | ||
653 | |a n/a | ||
689 | 0 | 0 | |a Data Science |0 (DE-588)1140936166 |D s |
689 | 0 | 1 | |a Datenmanagement |0 (DE-588)4213132-7 |D s |
689 | 0 | 2 | |a Datenaustausch |0 (DE-588)4227289-0 |D s |
689 | 0 | 3 | |a Gesundheitswesen |0 (DE-588)4020775-4 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Gesundheitswesen |0 (DE-588)4020775-4 |D s |
689 | 1 | 1 | |a Medizinische Informatik |0 (DE-588)4038261-8 |D s |
689 | 1 | |5 DE-604 | |
700 | 1 | |a Hulsen, Tim |4 edt | |
856 | 4 | 0 | |u https://directory.doabooks.org/handle/20.500.12854/84486 |x Verlag |z kostenfrei |
912 | |a ZDB-94-OAB | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033773010 |
Datensatz im Suchindex
_version_ | 1824556133456543744 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Hulsen, Tim |
author2_role | edt |
author2_variant | t h th |
author_facet | Hulsen, Tim |
building | Verbundindex |
bvnumber | BV048394312 |
classification_rvk | ST 300 XF 1277 |
collection | ZDB-94-OAB |
ctrlnum | (OCoLC)1339066378 (DE-599)HEB497484463 |
discipline | Informatik Medizin |
discipline_str_mv | Informatik Medizin |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001c 4500</leader><controlfield tag="001">BV048394312</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220804s2022 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783036539843</subfield><subfield code="9">9783036539843</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783036539836</subfield><subfield code="9">9783036539836</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783036539843</subfield><subfield code="9">9783036539843</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1339066378</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)HEB497484463</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-Y3</subfield><subfield code="a">DE-255</subfield><subfield code="a">DE-Y7</subfield><subfield code="a">DE-Y2</subfield><subfield code="a">DE-70</subfield><subfield code="a">DE-2174</subfield><subfield code="a">DE-127</subfield><subfield code="a">DE-22</subfield><subfield code="a">DE-155</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">XF 1277</subfield><subfield code="0">(DE-625)152745:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data Science in Healthcare</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2022</subfield></datafield><datafield tag="264" ind1=" " ind2="2"><subfield code="a">The Hague</subfield><subfield code="b">OAPEN FOUNDATION</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 199 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme, Karten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Data science is an interdisciplinary field that applies numerous techniques, such as machine learning, neural networks, and deep learning, to create value based on extracting knowledge and insights from available data. Advances in data science have a significant impact on healthcare. While advances in the sharing of medical information result in better and earlier diagnoses as well as more patient-tailored treatments, information management is also affected by trends such as increased patient centricity (with shared decision making), self-care (e.g., using wearables), and integrated care delivery. The delivery of health services is being revolutionized through the sharing and integration of health data across organizational boundaries. Via data science, researchers can deliver new approaches to merge, analyze, and process complex data and gain more actionable insights, understanding, and knowledge at the individual and population levels. This Special Issue focuses on how data science is used in healthcare (e.g., through predictive modeling) and on related topics, such as data sharing and data management</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenaustausch</subfield><subfield code="0">(DE-588)4227289-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gesundheitswesen</subfield><subfield code="0">(DE-588)4020775-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Medizinische Informatik</subfield><subfield code="0">(DE-588)4038261-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Datenmanagement</subfield><subfield code="0">(DE-588)4213132-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">data sharing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">data management</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">data science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">big data</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">healthcare</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">depression</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">psychological treatment</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">task sharing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">primary care</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">pilot study</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">non-specialist health worker</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">training</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">digital technology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">mental health</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">COVID-19</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">SARS-CoV-2</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">pneumonia</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">computed tomography</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">case fatality rate</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">social distancing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">smoking</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">metabolically healthy obese phenotype</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">metabolic syndrome</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">obesity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">coronavirus</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">machine learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">social media</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">apache spark</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Twitter</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">arteriovenous fistula</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">end stage kidney disease</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dialysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">kidney failure</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">risk prediction</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">naïve Bayes classifiers</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">precision medicine</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">machine learning models</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">data exploratory techniques</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">breast cancer diagnosis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">tumors classification</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">n/a</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Data Science</subfield><subfield code="0">(DE-588)1140936166</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Datenmanagement</subfield><subfield code="0">(DE-588)4213132-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Datenaustausch</subfield><subfield code="0">(DE-588)4227289-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Gesundheitswesen</subfield><subfield code="0">(DE-588)4020775-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gesundheitswesen</subfield><subfield code="0">(DE-588)4020775-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Medizinische Informatik</subfield><subfield code="0">(DE-588)4038261-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hulsen, Tim</subfield><subfield code="4">edt</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://directory.doabooks.org/handle/20.500.12854/84486</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-94-OAB</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033773010</subfield></datafield></record></collection> |
id | DE-604.BV048394312 |
illustrated | Illustrated |
index_date | 2024-07-03T20:21:21Z |
indexdate | 2025-02-20T07:18:43Z |
institution | BVB |
isbn | 9783036539843 9783036539836 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033773010 |
oclc_num | 1339066378 |
open_access_boolean | 1 |
owner | DE-12 DE-210 DE-521 DE-1102 DE-1046 DE-1028 DE-1050 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-BY-UBR DE-859 DE-860 DE-1049 DE-861 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-Re13 DE-BY-UBR DE-Y3 DE-255 DE-Y7 DE-Y2 DE-70 DE-2174 DE-127 DE-22 DE-BY-UBG DE-155 DE-BY-UBR DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-739 |
owner_facet | DE-12 DE-210 DE-521 DE-1102 DE-1046 DE-1028 DE-1050 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-BY-UBR DE-859 DE-860 DE-1049 DE-861 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-Re13 DE-BY-UBR DE-Y3 DE-255 DE-Y7 DE-Y2 DE-70 DE-2174 DE-127 DE-22 DE-BY-UBG DE-155 DE-BY-UBR DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-739 |
physical | 1 Online-Ressource (VII, 199 Seiten) Illustrationen, Diagramme, Karten |
psigel | ZDB-94-OAB |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | MDPI - Multidisciplinary Digital Publishing Institute |
record_format | marc |
spellingShingle | Data Science in Healthcare Datenaustausch (DE-588)4227289-0 gnd Gesundheitswesen (DE-588)4020775-4 gnd Medizinische Informatik (DE-588)4038261-8 gnd Data Science (DE-588)1140936166 gnd Datenmanagement (DE-588)4213132-7 gnd |
subject_GND | (DE-588)4227289-0 (DE-588)4020775-4 (DE-588)4038261-8 (DE-588)1140936166 (DE-588)4213132-7 |
title | Data Science in Healthcare |
title_auth | Data Science in Healthcare |
title_exact_search | Data Science in Healthcare |
title_exact_search_txtP | Data Science in Healthcare |
title_full | Data Science in Healthcare |
title_fullStr | Data Science in Healthcare |
title_full_unstemmed | Data Science in Healthcare |
title_short | Data Science in Healthcare |
title_sort | data science in healthcare |
topic | Datenaustausch (DE-588)4227289-0 gnd Gesundheitswesen (DE-588)4020775-4 gnd Medizinische Informatik (DE-588)4038261-8 gnd Data Science (DE-588)1140936166 gnd Datenmanagement (DE-588)4213132-7 gnd |
topic_facet | Datenaustausch Gesundheitswesen Medizinische Informatik Data Science Datenmanagement |
url | https://directory.doabooks.org/handle/20.500.12854/84486 |
work_keys_str_mv | AT hulsentim datascienceinhealthcare |