The Sub-Laplacian operators of some model domains:
The book constructs explicitly the fundamental solution of the sub-Laplacian operator for a family of model domains in Cn+1. This type of domain is a good point-wise model for a Cauchy-Rieman (CR) manifold with diagonalizable Levi form. Qualitative results for such operators have been studied extens...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin ; Boston
De Gruyter
[2022]
|
Schriftenreihe: | Advances in analysis and geometry
volume 7 |
Online-Zugang: | FAB01 FAW01 FCO01 FHA01 FHR01 FKE01 FLA01 TUM01 UBY01 UPA01 Volltext |
Zusammenfassung: | The book constructs explicitly the fundamental solution of the sub-Laplacian operator for a family of model domains in Cn+1. This type of domain is a good point-wise model for a Cauchy-Rieman (CR) manifold with diagonalizable Levi form. Qualitative results for such operators have been studied extensively, but exact formulas are difficult to derive. Exact formulas are closely related to the underlying geometry and lead to equations of classical types such as hypergeometric equations and Whittaker’s equations. |
Beschreibung: | 1 Online-Ressource (XIV, 250 Seiten) |
ISBN: | 9783110642995 9783110643176 |
DOI: | 10.1515/9783110642995 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV048392065 | ||
003 | DE-604 | ||
005 | 20230113 | ||
007 | cr|uuu---uuuuu | ||
008 | 220804s2022 |||| o||u| ||||||eng d | ||
020 | |a 9783110642995 |9 978-3-11-064299-5 | ||
020 | |a 9783110643176 |9 978-3-11-064317-6 | ||
024 | 7 | |a 10.1515/9783110642995 |2 doi | |
035 | |a (ZDB-23-DGG)9783110642995 | ||
035 | |a (OCoLC)1339067603 | ||
035 | |a (DE-599)BVBBV048392065 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1043 |a DE-1046 |a DE-858 |a DE-Aug4 |a DE-859 |a DE-860 |a DE-739 |a DE-91 |a DE-898 |a DE-706 | ||
084 | |a SK 620 |0 (DE-625)143249: |2 rvk | ||
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Chang, Der-Chen |e Verfasser |0 (DE-588)128990562 |4 aut | |
245 | 1 | 0 | |a The Sub-Laplacian operators of some model domains |c Der-Chen Chang and Jingzhi Tie |
264 | 1 | |a Berlin ; Boston |b De Gruyter |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a 1 Online-Ressource (XIV, 250 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Advances in analysis and geometry |v volume 7 | |
520 | |a The book constructs explicitly the fundamental solution of the sub-Laplacian operator for a family of model domains in Cn+1. This type of domain is a good point-wise model for a Cauchy-Rieman (CR) manifold with diagonalizable Levi form. Qualitative results for such operators have been studied extensively, but exact formulas are difficult to derive. Exact formulas are closely related to the underlying geometry and lead to equations of classical types such as hypergeometric equations and Whittaker’s equations. | ||
700 | 1 | |a Tie, Jingzhi |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-11-064210-0 |
830 | 0 | |a Advances in analysis and geometry |v volume 7 |w (DE-604)BV045516582 |9 7 | |
856 | 4 | 0 | |u https://doi.org/10.1515/9783110642995 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-23-DGG |a ZDB-23-DMA | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033770767 | ||
966 | e | |u https://doi.org/10.1515/9783110642995 |l FAB01 |p ZDB-23-DGG |q FAB_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110642995 |l FAW01 |p ZDB-23-DGG |q FAW_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110642995 |l FCO01 |p ZDB-23-DGG |q FCO_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110642995 |l FHA01 |p ZDB-23-DGG |q FHA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110642995 |l FHR01 |p ZDB-23-DMA |q ZDB-23-DMA22 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110642995 |l FKE01 |p ZDB-23-DGG |q FKE_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110642995 |l FLA01 |p ZDB-23-DGG |q FLA_PDA_DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110642995 |l TUM01 |p ZDB-23-DMA |q TUM_Paketkauf_2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110642995 |l UBY01 |p ZDB-23-DGG |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1515/9783110642995 |l UPA01 |p ZDB-23-DGG |q UPA_PDA_DGG |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184280721522688 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Chang, Der-Chen Tie, Jingzhi |
author_GND | (DE-588)128990562 |
author_facet | Chang, Der-Chen Tie, Jingzhi |
author_role | aut aut |
author_sort | Chang, Der-Chen |
author_variant | d c c dcc j t jt |
building | Verbundindex |
bvnumber | BV048392065 |
classification_rvk | SK 620 |
classification_tum | MAT 000 |
collection | ZDB-23-DGG ZDB-23-DMA |
ctrlnum | (ZDB-23-DGG)9783110642995 (OCoLC)1339067603 (DE-599)BVBBV048392065 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1515/9783110642995 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03068nmm a2200529zcb4500</leader><controlfield tag="001">BV048392065</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230113 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220804s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110642995</subfield><subfield code="9">978-3-11-064299-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110643176</subfield><subfield code="9">978-3-11-064317-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9783110642995</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-23-DGG)9783110642995</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1339067603</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048392065</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1043</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-858</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 620</subfield><subfield code="0">(DE-625)143249:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chang, Der-Chen</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)128990562</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Sub-Laplacian operators of some model domains</subfield><subfield code="c">Der-Chen Chang and Jingzhi Tie</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ; Boston</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 250 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Advances in analysis and geometry</subfield><subfield code="v">volume 7</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The book constructs explicitly the fundamental solution of the sub-Laplacian operator for a family of model domains in Cn+1. This type of domain is a good point-wise model for a Cauchy-Rieman (CR) manifold with diagonalizable Levi form. Qualitative results for such operators have been studied extensively, but exact formulas are difficult to derive. Exact formulas are closely related to the underlying geometry and lead to equations of classical types such as hypergeometric equations and Whittaker’s equations.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tie, Jingzhi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-11-064210-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Advances in analysis and geometry</subfield><subfield code="v">volume 7</subfield><subfield code="w">(DE-604)BV045516582</subfield><subfield code="9">7</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9783110642995</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033770767</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110642995</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAB_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110642995</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110642995</subfield><subfield code="l">FCO01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110642995</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110642995</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">ZDB-23-DMA22</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110642995</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110642995</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110642995</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-23-DMA</subfield><subfield code="q">TUM_Paketkauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110642995</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9783110642995</subfield><subfield code="l">UPA01</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048392065 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:21:06Z |
indexdate | 2024-07-10T09:36:50Z |
institution | BVB |
isbn | 9783110642995 9783110643176 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033770767 |
oclc_num | 1339067603 |
open_access_boolean | |
owner | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-706 |
owner_facet | DE-1043 DE-1046 DE-858 DE-Aug4 DE-859 DE-860 DE-739 DE-91 DE-BY-TUM DE-898 DE-BY-UBR DE-706 |
physical | 1 Online-Ressource (XIV, 250 Seiten) |
psigel | ZDB-23-DGG ZDB-23-DMA ZDB-23-DGG FAB_PDA_DGG ZDB-23-DGG FAW_PDA_DGG ZDB-23-DGG FCO_PDA_DGG ZDB-23-DGG FHA_PDA_DGG ZDB-23-DMA ZDB-23-DMA22 ZDB-23-DGG FKE_PDA_DGG ZDB-23-DGG FLA_PDA_DGG ZDB-23-DMA TUM_Paketkauf_2022 ZDB-23-DGG UPA_PDA_DGG |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | De Gruyter |
record_format | marc |
series | Advances in analysis and geometry |
series2 | Advances in analysis and geometry |
spelling | Chang, Der-Chen Verfasser (DE-588)128990562 aut The Sub-Laplacian operators of some model domains Der-Chen Chang and Jingzhi Tie Berlin ; Boston De Gruyter [2022] © 2022 1 Online-Ressource (XIV, 250 Seiten) txt rdacontent c rdamedia cr rdacarrier Advances in analysis and geometry volume 7 The book constructs explicitly the fundamental solution of the sub-Laplacian operator for a family of model domains in Cn+1. This type of domain is a good point-wise model for a Cauchy-Rieman (CR) manifold with diagonalizable Levi form. Qualitative results for such operators have been studied extensively, but exact formulas are difficult to derive. Exact formulas are closely related to the underlying geometry and lead to equations of classical types such as hypergeometric equations and Whittaker’s equations. Tie, Jingzhi Verfasser aut Erscheint auch als Druck-Ausgabe 978-3-11-064210-0 Advances in analysis and geometry volume 7 (DE-604)BV045516582 7 https://doi.org/10.1515/9783110642995 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Chang, Der-Chen Tie, Jingzhi The Sub-Laplacian operators of some model domains Advances in analysis and geometry |
title | The Sub-Laplacian operators of some model domains |
title_auth | The Sub-Laplacian operators of some model domains |
title_exact_search | The Sub-Laplacian operators of some model domains |
title_exact_search_txtP | The Sub-Laplacian operators of some model domains |
title_full | The Sub-Laplacian operators of some model domains Der-Chen Chang and Jingzhi Tie |
title_fullStr | The Sub-Laplacian operators of some model domains Der-Chen Chang and Jingzhi Tie |
title_full_unstemmed | The Sub-Laplacian operators of some model domains Der-Chen Chang and Jingzhi Tie |
title_short | The Sub-Laplacian operators of some model domains |
title_sort | the sub laplacian operators of some model domains |
url | https://doi.org/10.1515/9783110642995 |
volume_link | (DE-604)BV045516582 |
work_keys_str_mv | AT changderchen thesublaplacianoperatorsofsomemodeldomains AT tiejingzhi thesublaplacianoperatorsofsomemodeldomains |