Hardy martingales: stochastic holomorphy, L1-embeddings, and isomorphic invariants
This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that refl...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Ausgabe: | First published |
Schriftenreihe: | New mathematical monographs
43 |
Schlagworte: | |
Zusammenfassung: | This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that reflect characteristic qualities of complex analytic functions. Its particular themes are holomorphic random variables on Wiener space, and Hardy martingales on the infinite torus product, and numerous deep applications to the geometry and classification of complex Banach spaces, e.g., the SL∞ estimates for Doob's projection operator, the embedding of L1 into L1/H1, the isomorphic classification theorem for the polydisk algebras, or the real variables characterization of Banach spaces with the analytic Radon Nikodym property. Due to the inclusion of key background material on stochastic analysis and Banach space theory, it's suitable for a wide spectrum of researchers and graduate students working in classical and functional analysis |
Beschreibung: | xv, 500 Seiten Illustrationen, Diagramme |
ISBN: | 9781108838672 1108838677 |
Internformat
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV048387630 | ||
003 | DE-604 | ||
005 | 20221214 | ||
007 | t | ||
008 | 220802s2022 a||| |||| 00||| eng d | ||
020 | |a 9781108838672 |c hc |9 978-1-108-83867-2 | ||
020 | |a 1108838677 |c hc |9 1-108-83867-7 | ||
020 | |a 9781108838672 |c pb |9 978-1-108-83867-2 | ||
035 | |a (OCoLC)1338015634 | ||
035 | |a (DE-599)BVBBV048387630 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-188 | ||
082 | 0 | |a 519.287 | |
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
100 | 1 | |a Müller, Paul F. X. |d 1960- |0 (DE-588)140915419 |4 aut | |
245 | 1 | 0 | |a Hardy martingales |b stochastic holomorphy, L1-embeddings, and isomorphic invariants |c Paul F. X. Müller, Johannes Kepler University Linz |
250 | |a First published | ||
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a xv, 500 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a New mathematical monographs |v 43 | |
520 | |a This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that reflect characteristic qualities of complex analytic functions. Its particular themes are holomorphic random variables on Wiener space, and Hardy martingales on the infinite torus product, and numerous deep applications to the geometry and classification of complex Banach spaces, e.g., the SL∞ estimates for Doob's projection operator, the embedding of L1 into L1/H1, the isomorphic classification theorem for the polydisk algebras, or the real variables characterization of Banach spaces with the analytic Radon Nikodym property. Due to the inclusion of key background material on stochastic analysis and Banach space theory, it's suitable for a wide spectrum of researchers and graduate students working in classical and functional analysis | ||
650 | 4 | |a Martingales (Mathematics) | |
650 | 4 | |a Stochastic analysis | |
650 | 4 | |a Ideal spaces | |
650 | 4 | |a Probabilities | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-108-97601-5 |
830 | 0 | |a New mathematical monographs |v 43 |w (DE-604)BV035420183 |9 43 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-033766390 |
Datensatz im Suchindex
_version_ | 1804184273147658240 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Müller, Paul F. X. 1960- |
author_GND | (DE-588)140915419 |
author_facet | Müller, Paul F. X. 1960- |
author_role | aut |
author_sort | Müller, Paul F. X. 1960- |
author_variant | p f x m pfx pfxm |
building | Verbundindex |
bvnumber | BV048387630 |
classification_rvk | SK 600 |
ctrlnum | (OCoLC)1338015634 (DE-599)BVBBV048387630 |
dewey-full | 519.287 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.287 |
dewey-search | 519.287 |
dewey-sort | 3519.287 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
edition | First published |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02434nam a2200409zcb4500</leader><controlfield tag="001">BV048387630</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221214 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220802s2022 a||| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108838672</subfield><subfield code="c">hc</subfield><subfield code="9">978-1-108-83867-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1108838677</subfield><subfield code="c">hc</subfield><subfield code="9">1-108-83867-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108838672</subfield><subfield code="c">pb</subfield><subfield code="9">978-1-108-83867-2</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1338015634</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048387630</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-188</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.287</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Müller, Paul F. X.</subfield><subfield code="d">1960-</subfield><subfield code="0">(DE-588)140915419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hardy martingales</subfield><subfield code="b">stochastic holomorphy, L1-embeddings, and isomorphic invariants</subfield><subfield code="c">Paul F. X. Müller, Johannes Kepler University Linz</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First published</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xv, 500 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">New mathematical monographs</subfield><subfield code="v">43</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that reflect characteristic qualities of complex analytic functions. Its particular themes are holomorphic random variables on Wiener space, and Hardy martingales on the infinite torus product, and numerous deep applications to the geometry and classification of complex Banach spaces, e.g., the SL∞ estimates for Doob's projection operator, the embedding of L1 into L1/H1, the isomorphic classification theorem for the polydisk algebras, or the real variables characterization of Banach spaces with the analytic Radon Nikodym property. Due to the inclusion of key background material on stochastic analysis and Banach space theory, it's suitable for a wide spectrum of researchers and graduate students working in classical and functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Martingales (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ideal spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probabilities</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-108-97601-5</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">New mathematical monographs</subfield><subfield code="v">43</subfield><subfield code="w">(DE-604)BV035420183</subfield><subfield code="9">43</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033766390</subfield></datafield></record></collection> |
id | DE-604.BV048387630 |
illustrated | Illustrated |
index_date | 2024-07-03T20:20:12Z |
indexdate | 2024-07-10T09:36:43Z |
institution | BVB |
isbn | 9781108838672 1108838677 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033766390 |
oclc_num | 1338015634 |
open_access_boolean | |
owner | DE-188 |
owner_facet | DE-188 |
physical | xv, 500 Seiten Illustrationen, Diagramme |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
series | New mathematical monographs |
series2 | New mathematical monographs |
spelling | Müller, Paul F. X. 1960- (DE-588)140915419 aut Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants Paul F. X. Müller, Johannes Kepler University Linz First published Cambridge Cambridge University Press 2022 xv, 500 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier New mathematical monographs 43 This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that reflect characteristic qualities of complex analytic functions. Its particular themes are holomorphic random variables on Wiener space, and Hardy martingales on the infinite torus product, and numerous deep applications to the geometry and classification of complex Banach spaces, e.g., the SL∞ estimates for Doob's projection operator, the embedding of L1 into L1/H1, the isomorphic classification theorem for the polydisk algebras, or the real variables characterization of Banach spaces with the analytic Radon Nikodym property. Due to the inclusion of key background material on stochastic analysis and Banach space theory, it's suitable for a wide spectrum of researchers and graduate students working in classical and functional analysis Martingales (Mathematics) Stochastic analysis Ideal spaces Probabilities Erscheint auch als Online-Ausgabe 978-1-108-97601-5 New mathematical monographs 43 (DE-604)BV035420183 43 |
spellingShingle | Müller, Paul F. X. 1960- Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants New mathematical monographs Martingales (Mathematics) Stochastic analysis Ideal spaces Probabilities |
title | Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants |
title_auth | Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants |
title_exact_search | Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants |
title_exact_search_txtP | Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants |
title_full | Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants Paul F. X. Müller, Johannes Kepler University Linz |
title_fullStr | Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants Paul F. X. Müller, Johannes Kepler University Linz |
title_full_unstemmed | Hardy martingales stochastic holomorphy, L1-embeddings, and isomorphic invariants Paul F. X. Müller, Johannes Kepler University Linz |
title_short | Hardy martingales |
title_sort | hardy martingales stochastic holomorphy l1 embeddings and isomorphic invariants |
title_sub | stochastic holomorphy, L1-embeddings, and isomorphic invariants |
topic | Martingales (Mathematics) Stochastic analysis Ideal spaces Probabilities |
topic_facet | Martingales (Mathematics) Stochastic analysis Ideal spaces Probabilities |
volume_link | (DE-604)BV035420183 |
work_keys_str_mv | AT mullerpaulfx hardymartingalesstochasticholomorphyl1embeddingsandisomorphicinvariants |