What are tensors exactly?:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo
World Scientific
[2021]
|
Schlagworte: | |
Online-Zugang: | TUM01 |
Beschreibung: | 1 Online-Ressource (xviii, 227 Seiten) Illustrationen, Diagramme |
ISBN: | 9789811241024 9789811241031 9811241023 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV048382741 | ||
003 | DE-604 | ||
005 | 20220810 | ||
007 | cr|uuu---uuuuu | ||
008 | 220729s2021 |||| o||u| ||||||eng d | ||
020 | |a 9789811241024 |9 978-981-124-102-4 | ||
020 | |a 9789811241031 |9 978-981-124-103-1 | ||
020 | |a 9811241023 |9 9811241023 | ||
035 | |a (OCoLC)1344252573 | ||
035 | |a (DE-599)BVBBV048382741 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-91G | ||
084 | |a SK 370 |0 (DE-625)143234: |2 rvk | ||
084 | |a MAT 150 |2 stub | ||
100 | 1 | |a Guo, Hongyu |e Verfasser |0 (DE-588)1258416220 |4 aut | |
245 | 1 | 0 | |a What are tensors exactly? |c Hongyu Guo |
264 | 1 | |a New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo |b World Scientific |c [2021] | |
300 | |a 1 Online-Ressource (xviii, 227 Seiten) |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Intro -- Contents -- Preface -- List of Boxes -- List of Figures -- Chapter Dependency Chart -- Notation -- Chapter 1. Confusions: What Are Tensors Exactly? -- 1. Questions and Confusions -- 2. Who Invented the Tensor? -- 3. Different Definitions of the Tensor -- 4. Plain Things by Fancy Tensor Names -- 5. Tensors without a Tensor Name-Linear Transformations -- 6. Comparison: Different Definitions of the Vector-Concrete Systems vs. Abstract Systems -- 7. Tensor Product and Tensor Spaces -- 8. Degree, Rank, Order or Dimension-Which Is the Best Name? | |
505 | 8 | |a *9. What Are Pseudo-Scalars, Pseudo-Vectors and Pseudo-Tensors Exactly? -- 10. What Is Tensor Analysis Exactly? Relation to Riemannian Geometry -- 10.1 Vector Analysis -- 10.2 Tensor Analysis and Riemannian Geometry -- Chapter 2. Why and How Are Tensors Used in Machine Learning? -- 1. How AlphaGo Beat the Best Human Go Player via Deep Learning -- 2. The Tensor Data Structure -- 2.1 AlphaGo -- 2.2 Images and Videos -- 2.3 Speech and Audio Applications -- 3. TensorFlow and the Tensor Processing Unit (TPU) -- 4. Is Tensor in Machine Learning a Hype? -- Chapter 3. Direct Sum Space U ⊕ V | |
505 | 8 | |a 1. The Elements -- 2. The Operations -- 3. The Dimension of U ⊕ V -- Chapter 4. Gibbs Dyadics -- 1. What Is a Dyad? -- 2. When Are Two Dyads Equal? -- 3. What Are the Operations on Dyads? -- 4. What Is a Dyadic? -- 5. What Are the Operations on Dyadics? -- 6. When Are Two Dyadics Equal? -- 7. Matrix Representation -- 8. Change of Coordinates -- 9. What Are the Meanings of Dyadics? Linear Transformations and Bilinear Forms -- 10. What Is the Nature of Dyadic Juxtaposition? -- Chapter 5. Tensor Spaces (Tensor Product U ⊕ V) -- 1. Bilinear Mappings | |
505 | 8 | |a 2. Differences: Bilinear Mapping vs. Linear Mapping -- 3. Multilinear Mappings -- 4. Tensor Product Space of Two Vector Spaces -- 5. Decomposable Tensors -- 6. Tensor Product of Linear Mappings -- 7. Tensor Product Space of Multiple Vector Spaces -- 8. Vector-valued Tensors-The Most General Model -- Chapter 6. Tensor Spaces (Tensor Power V⊕(p -- q)) -- 1. Tensor Spaces (Tensor Power Spaces) -- 2. Change of Basis -- 3. Induced Inner Product -- 4. Lowering and Raising Indices-Isomorphisms -- Chapter 7. Tensor Algebra -- 1. Tensor Product of Tensors -- 2. Tensor Algebra | |
650 | 0 | 7 | |a Tensorrechnung |0 (DE-588)4192487-3 |2 gnd |9 rswk-swf |
653 | 6 | |a Electronic books | |
689 | 0 | 0 | |a Tensorrechnung |0 (DE-588)4192487-3 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |a Guo, Hongyu |t What Are Tensors Exactly? |d Singapore : World Scientific Publishing Company,c2021 |n Druck-Ausgabe, Hardcover |z 978-981-124-101-7 |
912 | |a ZDB-124-WOP | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033761558 | ||
966 | e | |u https://doi.org/10.1142/12388 |l TUM01 |p ZDB-124-WOP |q TUM_Einzelkauf_2022 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184264718155776 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Guo, Hongyu |
author_GND | (DE-588)1258416220 |
author_facet | Guo, Hongyu |
author_role | aut |
author_sort | Guo, Hongyu |
author_variant | h g hg |
building | Verbundindex |
bvnumber | BV048382741 |
classification_rvk | SK 370 |
classification_tum | MAT 150 |
collection | ZDB-124-WOP |
contents | Intro -- Contents -- Preface -- List of Boxes -- List of Figures -- Chapter Dependency Chart -- Notation -- Chapter 1. Confusions: What Are Tensors Exactly? -- 1. Questions and Confusions -- 2. Who Invented the Tensor? -- 3. Different Definitions of the Tensor -- 4. Plain Things by Fancy Tensor Names -- 5. Tensors without a Tensor Name-Linear Transformations -- 6. Comparison: Different Definitions of the Vector-Concrete Systems vs. Abstract Systems -- 7. Tensor Product and Tensor Spaces -- 8. Degree, Rank, Order or Dimension-Which Is the Best Name? *9. What Are Pseudo-Scalars, Pseudo-Vectors and Pseudo-Tensors Exactly? -- 10. What Is Tensor Analysis Exactly? Relation to Riemannian Geometry -- 10.1 Vector Analysis -- 10.2 Tensor Analysis and Riemannian Geometry -- Chapter 2. Why and How Are Tensors Used in Machine Learning? -- 1. How AlphaGo Beat the Best Human Go Player via Deep Learning -- 2. The Tensor Data Structure -- 2.1 AlphaGo -- 2.2 Images and Videos -- 2.3 Speech and Audio Applications -- 3. TensorFlow and the Tensor Processing Unit (TPU) -- 4. Is Tensor in Machine Learning a Hype? -- Chapter 3. Direct Sum Space U ⊕ V 1. The Elements -- 2. The Operations -- 3. The Dimension of U ⊕ V -- Chapter 4. Gibbs Dyadics -- 1. What Is a Dyad? -- 2. When Are Two Dyads Equal? -- 3. What Are the Operations on Dyads? -- 4. What Is a Dyadic? -- 5. What Are the Operations on Dyadics? -- 6. When Are Two Dyadics Equal? -- 7. Matrix Representation -- 8. Change of Coordinates -- 9. What Are the Meanings of Dyadics? Linear Transformations and Bilinear Forms -- 10. What Is the Nature of Dyadic Juxtaposition? -- Chapter 5. Tensor Spaces (Tensor Product U ⊕ V) -- 1. Bilinear Mappings 2. Differences: Bilinear Mapping vs. Linear Mapping -- 3. Multilinear Mappings -- 4. Tensor Product Space of Two Vector Spaces -- 5. Decomposable Tensors -- 6. Tensor Product of Linear Mappings -- 7. Tensor Product Space of Multiple Vector Spaces -- 8. Vector-valued Tensors-The Most General Model -- Chapter 6. Tensor Spaces (Tensor Power V⊕(p -- q)) -- 1. Tensor Spaces (Tensor Power Spaces) -- 2. Change of Basis -- 3. Induced Inner Product -- 4. Lowering and Raising Indices-Isomorphisms -- Chapter 7. Tensor Algebra -- 1. Tensor Product of Tensors -- 2. Tensor Algebra |
ctrlnum | (OCoLC)1344252573 (DE-599)BVBBV048382741 |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03842nmm a2200433 c 4500</leader><controlfield tag="001">BV048382741</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220810 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220729s2021 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811241024</subfield><subfield code="9">978-981-124-102-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811241031</subfield><subfield code="9">978-981-124-103-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9811241023</subfield><subfield code="9">9811241023</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1344252573</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048382741</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 370</subfield><subfield code="0">(DE-625)143234:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 150</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Hongyu</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1258416220</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">What are tensors exactly?</subfield><subfield code="c">Hongyu Guo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo</subfield><subfield code="b">World Scientific</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 227 Seiten)</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Contents -- Preface -- List of Boxes -- List of Figures -- Chapter Dependency Chart -- Notation -- Chapter 1. Confusions: What Are Tensors Exactly? -- 1. Questions and Confusions -- 2. Who Invented the Tensor? -- 3. Different Definitions of the Tensor -- 4. Plain Things by Fancy Tensor Names -- 5. Tensors without a Tensor Name-Linear Transformations -- 6. Comparison: Different Definitions of the Vector-Concrete Systems vs. Abstract Systems -- 7. Tensor Product and Tensor Spaces -- 8. Degree, Rank, Order or Dimension-Which Is the Best Name?</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">*9. What Are Pseudo-Scalars, Pseudo-Vectors and Pseudo-Tensors Exactly? -- 10. What Is Tensor Analysis Exactly? Relation to Riemannian Geometry -- 10.1 Vector Analysis -- 10.2 Tensor Analysis and Riemannian Geometry -- Chapter 2. Why and How Are Tensors Used in Machine Learning? -- 1. How AlphaGo Beat the Best Human Go Player via Deep Learning -- 2. The Tensor Data Structure -- 2.1 AlphaGo -- 2.2 Images and Videos -- 2.3 Speech and Audio Applications -- 3. TensorFlow and the Tensor Processing Unit (TPU) -- 4. Is Tensor in Machine Learning a Hype? -- Chapter 3. Direct Sum Space U ⊕ V</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1. The Elements -- 2. The Operations -- 3. The Dimension of U ⊕ V -- Chapter 4. Gibbs Dyadics -- 1. What Is a Dyad? -- 2. When Are Two Dyads Equal? -- 3. What Are the Operations on Dyads? -- 4. What Is a Dyadic? -- 5. What Are the Operations on Dyadics? -- 6. When Are Two Dyadics Equal? -- 7. Matrix Representation -- 8. Change of Coordinates -- 9. What Are the Meanings of Dyadics? Linear Transformations and Bilinear Forms -- 10. What Is the Nature of Dyadic Juxtaposition? -- Chapter 5. Tensor Spaces (Tensor Product U ⊕ V) -- 1. Bilinear Mappings</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2. Differences: Bilinear Mapping vs. Linear Mapping -- 3. Multilinear Mappings -- 4. Tensor Product Space of Two Vector Spaces -- 5. Decomposable Tensors -- 6. Tensor Product of Linear Mappings -- 7. Tensor Product Space of Multiple Vector Spaces -- 8. Vector-valued Tensors-The Most General Model -- Chapter 6. Tensor Spaces (Tensor Power V⊕(p -- q)) -- 1. Tensor Spaces (Tensor Power Spaces) -- 2. Change of Basis -- 3. Induced Inner Product -- 4. Lowering and Raising Indices-Isomorphisms -- Chapter 7. Tensor Algebra -- 1. Tensor Product of Tensors -- 2. Tensor Algebra</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tensorrechnung</subfield><subfield code="0">(DE-588)4192487-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Tensorrechnung</subfield><subfield code="0">(DE-588)4192487-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Guo, Hongyu</subfield><subfield code="t">What Are Tensors Exactly?</subfield><subfield code="d">Singapore : World Scientific Publishing Company,c2021</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-981-124-101-7</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-124-WOP</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033761558</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1142/12388</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-124-WOP</subfield><subfield code="q">TUM_Einzelkauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048382741 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:19:24Z |
indexdate | 2024-07-10T09:36:35Z |
institution | BVB |
isbn | 9789811241024 9789811241031 9811241023 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033761558 |
oclc_num | 1344252573 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | 1 Online-Ressource (xviii, 227 Seiten) Illustrationen, Diagramme |
psigel | ZDB-124-WOP ZDB-124-WOP TUM_Einzelkauf_2022 |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | World Scientific |
record_format | marc |
spelling | Guo, Hongyu Verfasser (DE-588)1258416220 aut What are tensors exactly? Hongyu Guo New Jersey ; London ; Singapore ; Beijing ; Shanghai ; Hong Kong ; Taipei ; Chennai ; Tokyo World Scientific [2021] 1 Online-Ressource (xviii, 227 Seiten) Illustrationen, Diagramme txt rdacontent c rdamedia cr rdacarrier Intro -- Contents -- Preface -- List of Boxes -- List of Figures -- Chapter Dependency Chart -- Notation -- Chapter 1. Confusions: What Are Tensors Exactly? -- 1. Questions and Confusions -- 2. Who Invented the Tensor? -- 3. Different Definitions of the Tensor -- 4. Plain Things by Fancy Tensor Names -- 5. Tensors without a Tensor Name-Linear Transformations -- 6. Comparison: Different Definitions of the Vector-Concrete Systems vs. Abstract Systems -- 7. Tensor Product and Tensor Spaces -- 8. Degree, Rank, Order or Dimension-Which Is the Best Name? *9. What Are Pseudo-Scalars, Pseudo-Vectors and Pseudo-Tensors Exactly? -- 10. What Is Tensor Analysis Exactly? Relation to Riemannian Geometry -- 10.1 Vector Analysis -- 10.2 Tensor Analysis and Riemannian Geometry -- Chapter 2. Why and How Are Tensors Used in Machine Learning? -- 1. How AlphaGo Beat the Best Human Go Player via Deep Learning -- 2. The Tensor Data Structure -- 2.1 AlphaGo -- 2.2 Images and Videos -- 2.3 Speech and Audio Applications -- 3. TensorFlow and the Tensor Processing Unit (TPU) -- 4. Is Tensor in Machine Learning a Hype? -- Chapter 3. Direct Sum Space U ⊕ V 1. The Elements -- 2. The Operations -- 3. The Dimension of U ⊕ V -- Chapter 4. Gibbs Dyadics -- 1. What Is a Dyad? -- 2. When Are Two Dyads Equal? -- 3. What Are the Operations on Dyads? -- 4. What Is a Dyadic? -- 5. What Are the Operations on Dyadics? -- 6. When Are Two Dyadics Equal? -- 7. Matrix Representation -- 8. Change of Coordinates -- 9. What Are the Meanings of Dyadics? Linear Transformations and Bilinear Forms -- 10. What Is the Nature of Dyadic Juxtaposition? -- Chapter 5. Tensor Spaces (Tensor Product U ⊕ V) -- 1. Bilinear Mappings 2. Differences: Bilinear Mapping vs. Linear Mapping -- 3. Multilinear Mappings -- 4. Tensor Product Space of Two Vector Spaces -- 5. Decomposable Tensors -- 6. Tensor Product of Linear Mappings -- 7. Tensor Product Space of Multiple Vector Spaces -- 8. Vector-valued Tensors-The Most General Model -- Chapter 6. Tensor Spaces (Tensor Power V⊕(p -- q)) -- 1. Tensor Spaces (Tensor Power Spaces) -- 2. Change of Basis -- 3. Induced Inner Product -- 4. Lowering and Raising Indices-Isomorphisms -- Chapter 7. Tensor Algebra -- 1. Tensor Product of Tensors -- 2. Tensor Algebra Tensorrechnung (DE-588)4192487-3 gnd rswk-swf Electronic books Tensorrechnung (DE-588)4192487-3 s DE-604 Erscheint auch als Guo, Hongyu What Are Tensors Exactly? Singapore : World Scientific Publishing Company,c2021 Druck-Ausgabe, Hardcover 978-981-124-101-7 |
spellingShingle | Guo, Hongyu What are tensors exactly? Intro -- Contents -- Preface -- List of Boxes -- List of Figures -- Chapter Dependency Chart -- Notation -- Chapter 1. Confusions: What Are Tensors Exactly? -- 1. Questions and Confusions -- 2. Who Invented the Tensor? -- 3. Different Definitions of the Tensor -- 4. Plain Things by Fancy Tensor Names -- 5. Tensors without a Tensor Name-Linear Transformations -- 6. Comparison: Different Definitions of the Vector-Concrete Systems vs. Abstract Systems -- 7. Tensor Product and Tensor Spaces -- 8. Degree, Rank, Order or Dimension-Which Is the Best Name? *9. What Are Pseudo-Scalars, Pseudo-Vectors and Pseudo-Tensors Exactly? -- 10. What Is Tensor Analysis Exactly? Relation to Riemannian Geometry -- 10.1 Vector Analysis -- 10.2 Tensor Analysis and Riemannian Geometry -- Chapter 2. Why and How Are Tensors Used in Machine Learning? -- 1. How AlphaGo Beat the Best Human Go Player via Deep Learning -- 2. The Tensor Data Structure -- 2.1 AlphaGo -- 2.2 Images and Videos -- 2.3 Speech and Audio Applications -- 3. TensorFlow and the Tensor Processing Unit (TPU) -- 4. Is Tensor in Machine Learning a Hype? -- Chapter 3. Direct Sum Space U ⊕ V 1. The Elements -- 2. The Operations -- 3. The Dimension of U ⊕ V -- Chapter 4. Gibbs Dyadics -- 1. What Is a Dyad? -- 2. When Are Two Dyads Equal? -- 3. What Are the Operations on Dyads? -- 4. What Is a Dyadic? -- 5. What Are the Operations on Dyadics? -- 6. When Are Two Dyadics Equal? -- 7. Matrix Representation -- 8. Change of Coordinates -- 9. What Are the Meanings of Dyadics? Linear Transformations and Bilinear Forms -- 10. What Is the Nature of Dyadic Juxtaposition? -- Chapter 5. Tensor Spaces (Tensor Product U ⊕ V) -- 1. Bilinear Mappings 2. Differences: Bilinear Mapping vs. Linear Mapping -- 3. Multilinear Mappings -- 4. Tensor Product Space of Two Vector Spaces -- 5. Decomposable Tensors -- 6. Tensor Product of Linear Mappings -- 7. Tensor Product Space of Multiple Vector Spaces -- 8. Vector-valued Tensors-The Most General Model -- Chapter 6. Tensor Spaces (Tensor Power V⊕(p -- q)) -- 1. Tensor Spaces (Tensor Power Spaces) -- 2. Change of Basis -- 3. Induced Inner Product -- 4. Lowering and Raising Indices-Isomorphisms -- Chapter 7. Tensor Algebra -- 1. Tensor Product of Tensors -- 2. Tensor Algebra Tensorrechnung (DE-588)4192487-3 gnd |
subject_GND | (DE-588)4192487-3 |
title | What are tensors exactly? |
title_auth | What are tensors exactly? |
title_exact_search | What are tensors exactly? |
title_exact_search_txtP | What are tensors exactly? |
title_full | What are tensors exactly? Hongyu Guo |
title_fullStr | What are tensors exactly? Hongyu Guo |
title_full_unstemmed | What are tensors exactly? Hongyu Guo |
title_short | What are tensors exactly? |
title_sort | what are tensors exactly |
topic | Tensorrechnung (DE-588)4192487-3 gnd |
topic_facet | Tensorrechnung |
work_keys_str_mv | AT guohongyu whataretensorsexactly |