Machine learning and wireless communications:
How can machine learning help the design of future communication networks - and how can future networks meet the demands of emerging machine learning applications? Discover the interactions between two of the most transformative and impactful technologies of our age in this comprehensive book. First...
Gespeichert in:
Weitere Verfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY
Cambridge University Press
2022
|
Schlagworte: | |
Online-Zugang: | DE-12 DE-634 DE-92 DE-91 DE-473 Volltext |
Zusammenfassung: | How can machine learning help the design of future communication networks - and how can future networks meet the demands of emerging machine learning applications? Discover the interactions between two of the most transformative and impactful technologies of our age in this comprehensive book. First, learn how modern machine learning techniques, such as deep neural networks, can transform how we design and optimize future communication networks. Accessible introductions to concepts and tools are accompanied by numerous real-world examples, showing you how these techniques can be used to tackle longstanding problems. Next, explore the design of wireless networks as platforms for machine learning applications - an overview of modern machine learning techniques and communication protocols will help you to understand the challenges, while new methods and design approaches will be presented to handle wireless channel impairments such as noise and interference, to meet the demands of emerging machine learning applications at the wireless edge. |
Beschreibung: | Title from publisher's bibliographic system (viewed on 20 Jun 2022) Deep neural networks for joint source-channel coding / David Burth Kurka, Milind Rao, Nariman Farsad, Deniz Gündüz, Andrea Goldsmith -- Timely wireless edge inference / Sheng Zhou, Wenqi Shi, Xiufeng Huang, and Zhisheng Niu |
Beschreibung: | 1 Online-Ressource (xiv, 544 Seiten) |
ISBN: | 9781108966559 |
DOI: | 10.1017/9781108966559 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV048379213 | ||
003 | DE-604 | ||
005 | 20230406 | ||
007 | cr|uuu---uuuuu | ||
008 | 220727s2022 xx o|||| 00||| eng d | ||
020 | |a 9781108966559 |c Online |9 978-1-108-96655-9 | ||
024 | 7 | |a 10.1017/9781108966559 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108966559 | ||
035 | |a (OCoLC)1339078232 | ||
035 | |a (DE-599)BVBBV048379213 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-473 |a DE-91 |a DE-83 | ||
082 | 0 | |a 621.382 | |
084 | |a ST 300 |0 (DE-625)143650: |2 rvk | ||
084 | |a ZN 6400 |0 (DE-625)157560: |2 rvk | ||
084 | |a ZN 6560 |0 (DE-625)157572: |2 rvk | ||
084 | |a ELT 714 |2 stub | ||
084 | |a DAT 708 |2 stub | ||
245 | 1 | 0 | |a Machine learning and wireless communications |c edited by Yonina C. Eldar, Weizmann Institute of Science, Andrea Goldsmith, Princeton University, Deniz Gündüz, Imperial Colleg, H. Vincent Poor, Princeton University |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (xiv, 544 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 20 Jun 2022) | ||
500 | |a Deep neural networks for joint source-channel coding / David Burth Kurka, Milind Rao, Nariman Farsad, Deniz Gündüz, Andrea Goldsmith -- Timely wireless edge inference / Sheng Zhou, Wenqi Shi, Xiufeng Huang, and Zhisheng Niu | ||
520 | |a How can machine learning help the design of future communication networks - and how can future networks meet the demands of emerging machine learning applications? Discover the interactions between two of the most transformative and impactful technologies of our age in this comprehensive book. First, learn how modern machine learning techniques, such as deep neural networks, can transform how we design and optimize future communication networks. Accessible introductions to concepts and tools are accompanied by numerous real-world examples, showing you how these techniques can be used to tackle longstanding problems. Next, explore the design of wireless networks as platforms for machine learning applications - an overview of modern machine learning techniques and communication protocols will help you to understand the challenges, while new methods and design approaches will be presented to handle wireless channel impairments such as noise and interference, to meet the demands of emerging machine learning applications at the wireless edge. | ||
650 | 4 | |a Wireless communication systems | |
650 | 4 | |a Machine learning | |
650 | 0 | 7 | |a Mobilfunk |0 (DE-588)4170280-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mobile Telekommunikation |0 (DE-588)4341131-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Maschinelles Lernen |0 (DE-588)4193754-5 |D s |
689 | 0 | 1 | |a Künstliche Intelligenz |0 (DE-588)4033447-8 |D s |
689 | 0 | 2 | |a Mobilfunk |0 (DE-588)4170280-3 |D s |
689 | 0 | 3 | |a Mobile Telekommunikation |0 (DE-588)4341131-9 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Eldar, Yonina C. |d 1973- |0 (DE-588)1043849696 |4 edt | |
700 | 1 | |a Goldsmith, Andrea |d 1964- |0 (DE-588)173861636 |4 edt | |
700 | 1 | |a Gündüz, Deniz |d 1976- |0 (DE-588)1159788731 |4 edt | |
700 | 1 | |a Poor, H. Vincent |d 1951- |0 (DE-588)1069964891 |4 edt | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-83298-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108966559 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033758096 | |
966 | e | |u https://doi.org/10.1017/9781108966559 |l DE-12 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108966559 |l DE-634 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108966559 |l DE-92 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108966559 |l DE-91 |p ZDB-20-CBO |q TUM_Einzelkauf_2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108966559 |l DE-91 |p ZDB-20-CBO |q TUM_Paketkauf_2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108966559 |l DE-473 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1822792511190466560 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Eldar, Yonina C. 1973- Goldsmith, Andrea 1964- Gündüz, Deniz 1976- Poor, H. Vincent 1951- |
author2_role | edt edt edt edt |
author2_variant | y c e yc yce a g ag d g dg h v p hv hvp |
author_GND | (DE-588)1043849696 (DE-588)173861636 (DE-588)1159788731 (DE-588)1069964891 |
author_facet | Eldar, Yonina C. 1973- Goldsmith, Andrea 1964- Gündüz, Deniz 1976- Poor, H. Vincent 1951- |
building | Verbundindex |
bvnumber | BV048379213 |
classification_rvk | ST 300 ZN 6400 ZN 6560 |
classification_tum | ELT 714 DAT 708 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108966559 (OCoLC)1339078232 (DE-599)BVBBV048379213 |
dewey-full | 621.382 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 621 - Applied physics |
dewey-raw | 621.382 |
dewey-search | 621.382 |
dewey-sort | 3621.382 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Informatik Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Informatik Elektrotechnik Elektrotechnik / Elektronik / Nachrichtentechnik |
doi_str_mv | 10.1017/9781108966559 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV048379213</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230406</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220727s2022 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108966559</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-96655-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108966559</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108966559</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1339078232</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048379213</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">621.382</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 300</subfield><subfield code="0">(DE-625)143650:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6400</subfield><subfield code="0">(DE-625)157560:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 6560</subfield><subfield code="0">(DE-625)157572:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ELT 714</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 708</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Machine learning and wireless communications</subfield><subfield code="c">edited by Yonina C. Eldar, Weizmann Institute of Science, Andrea Goldsmith, Princeton University, Deniz Gündüz, Imperial Colleg, H. Vincent Poor, Princeton University</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 544 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 20 Jun 2022)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Deep neural networks for joint source-channel coding / David Burth Kurka, Milind Rao, Nariman Farsad, Deniz Gündüz, Andrea Goldsmith -- Timely wireless edge inference / Sheng Zhou, Wenqi Shi, Xiufeng Huang, and Zhisheng Niu</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">How can machine learning help the design of future communication networks - and how can future networks meet the demands of emerging machine learning applications? Discover the interactions between two of the most transformative and impactful technologies of our age in this comprehensive book. First, learn how modern machine learning techniques, such as deep neural networks, can transform how we design and optimize future communication networks. Accessible introductions to concepts and tools are accompanied by numerous real-world examples, showing you how these techniques can be used to tackle longstanding problems. Next, explore the design of wireless networks as platforms for machine learning applications - an overview of modern machine learning techniques and communication protocols will help you to understand the challenges, while new methods and design approaches will be presented to handle wireless channel impairments such as noise and interference, to meet the demands of emerging machine learning applications at the wireless edge.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wireless communication systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mobilfunk</subfield><subfield code="0">(DE-588)4170280-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mobile Telekommunikation</subfield><subfield code="0">(DE-588)4341131-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Maschinelles Lernen</subfield><subfield code="0">(DE-588)4193754-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Künstliche Intelligenz</subfield><subfield code="0">(DE-588)4033447-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Mobilfunk</subfield><subfield code="0">(DE-588)4170280-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Mobile Telekommunikation</subfield><subfield code="0">(DE-588)4341131-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eldar, Yonina C.</subfield><subfield code="d">1973-</subfield><subfield code="0">(DE-588)1043849696</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Goldsmith, Andrea</subfield><subfield code="d">1964-</subfield><subfield code="0">(DE-588)173861636</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gündüz, Deniz</subfield><subfield code="d">1976-</subfield><subfield code="0">(DE-588)1159788731</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Poor, H. Vincent</subfield><subfield code="d">1951-</subfield><subfield code="0">(DE-588)1069964891</subfield><subfield code="4">edt</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-83298-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108966559</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033758096</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108966559</subfield><subfield code="l">DE-12</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108966559</subfield><subfield code="l">DE-634</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108966559</subfield><subfield code="l">DE-92</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108966559</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Einzelkauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108966559</subfield><subfield code="l">DE-91</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Paketkauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108966559</subfield><subfield code="l">DE-473</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048379213 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:18:10Z |
indexdate | 2025-01-31T19:06:42Z |
institution | BVB |
isbn | 9781108966559 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033758096 |
oclc_num | 1339078232 |
open_access_boolean | |
owner | DE-12 DE-92 DE-473 DE-BY-UBG DE-91 DE-BY-TUM DE-83 |
owner_facet | DE-12 DE-92 DE-473 DE-BY-UBG DE-91 DE-BY-TUM DE-83 |
physical | 1 Online-Ressource (xiv, 544 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO TUM_Einzelkauf_2022 ZDB-20-CBO TUM_Paketkauf_2022 ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Machine learning and wireless communications edited by Yonina C. Eldar, Weizmann Institute of Science, Andrea Goldsmith, Princeton University, Deniz Gündüz, Imperial Colleg, H. Vincent Poor, Princeton University Cambridge, United Kingdom ; New York, NY Cambridge University Press 2022 1 Online-Ressource (xiv, 544 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 20 Jun 2022) Deep neural networks for joint source-channel coding / David Burth Kurka, Milind Rao, Nariman Farsad, Deniz Gündüz, Andrea Goldsmith -- Timely wireless edge inference / Sheng Zhou, Wenqi Shi, Xiufeng Huang, and Zhisheng Niu How can machine learning help the design of future communication networks - and how can future networks meet the demands of emerging machine learning applications? Discover the interactions between two of the most transformative and impactful technologies of our age in this comprehensive book. First, learn how modern machine learning techniques, such as deep neural networks, can transform how we design and optimize future communication networks. Accessible introductions to concepts and tools are accompanied by numerous real-world examples, showing you how these techniques can be used to tackle longstanding problems. Next, explore the design of wireless networks as platforms for machine learning applications - an overview of modern machine learning techniques and communication protocols will help you to understand the challenges, while new methods and design approaches will be presented to handle wireless channel impairments such as noise and interference, to meet the demands of emerging machine learning applications at the wireless edge. Wireless communication systems Machine learning Mobilfunk (DE-588)4170280-3 gnd rswk-swf Künstliche Intelligenz (DE-588)4033447-8 gnd rswk-swf Mobile Telekommunikation (DE-588)4341131-9 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 gnd rswk-swf Maschinelles Lernen (DE-588)4193754-5 s Künstliche Intelligenz (DE-588)4033447-8 s Mobilfunk (DE-588)4170280-3 s Mobile Telekommunikation (DE-588)4341131-9 s DE-604 Eldar, Yonina C. 1973- (DE-588)1043849696 edt Goldsmith, Andrea 1964- (DE-588)173861636 edt Gündüz, Deniz 1976- (DE-588)1159788731 edt Poor, H. Vincent 1951- (DE-588)1069964891 edt Erscheint auch als Druck-Ausgabe 978-1-108-83298-4 https://doi.org/10.1017/9781108966559 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Machine learning and wireless communications Wireless communication systems Machine learning Mobilfunk (DE-588)4170280-3 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Mobile Telekommunikation (DE-588)4341131-9 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
subject_GND | (DE-588)4170280-3 (DE-588)4033447-8 (DE-588)4341131-9 (DE-588)4193754-5 |
title | Machine learning and wireless communications |
title_auth | Machine learning and wireless communications |
title_exact_search | Machine learning and wireless communications |
title_exact_search_txtP | Machine learning and wireless communications |
title_full | Machine learning and wireless communications edited by Yonina C. Eldar, Weizmann Institute of Science, Andrea Goldsmith, Princeton University, Deniz Gündüz, Imperial Colleg, H. Vincent Poor, Princeton University |
title_fullStr | Machine learning and wireless communications edited by Yonina C. Eldar, Weizmann Institute of Science, Andrea Goldsmith, Princeton University, Deniz Gündüz, Imperial Colleg, H. Vincent Poor, Princeton University |
title_full_unstemmed | Machine learning and wireless communications edited by Yonina C. Eldar, Weizmann Institute of Science, Andrea Goldsmith, Princeton University, Deniz Gündüz, Imperial Colleg, H. Vincent Poor, Princeton University |
title_short | Machine learning and wireless communications |
title_sort | machine learning and wireless communications |
topic | Wireless communication systems Machine learning Mobilfunk (DE-588)4170280-3 gnd Künstliche Intelligenz (DE-588)4033447-8 gnd Mobile Telekommunikation (DE-588)4341131-9 gnd Maschinelles Lernen (DE-588)4193754-5 gnd |
topic_facet | Wireless communication systems Machine learning Mobilfunk Künstliche Intelligenz Mobile Telekommunikation Maschinelles Lernen |
url | https://doi.org/10.1017/9781108966559 |
work_keys_str_mv | AT eldaryoninac machinelearningandwirelesscommunications AT goldsmithandrea machinelearningandwirelesscommunications AT gunduzdeniz machinelearningandwirelesscommunications AT poorhvincent machinelearningandwirelesscommunications |