Elliptic regularity theory by approximation methods:
Presenting the basics of elliptic PDEs in connection with regularity theory, the book bridges fundamental breakthroughs - such as the Krylov-Safonov and Evans-Krylov results, Caffarelli's regularity theory, and the counterexamples due to Nadirashvili and Vlăduţ - and modern developments, incl...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schriftenreihe: | London Mathematical Society lecture note series
477 |
Schlagworte: | |
Online-Zugang: | BSB01 BTU01 FHN01 UBG01 Volltext |
Zusammenfassung: | Presenting the basics of elliptic PDEs in connection with regularity theory, the book bridges fundamental breakthroughs - such as the Krylov-Safonov and Evans-Krylov results, Caffarelli's regularity theory, and the counterexamples due to Nadirashvili and Vlăduţ - and modern developments, including improved regularity for flat solutions and the partial regularity result. After presenting this general panorama, accounting for the subtleties surrounding C-viscosity and Lp-viscosity solutions, the book examines important models through approximation methods. The analysis continues with the asymptotic approach, based on the recession operator. After that, approximation techniques produce a regularity theory for the Isaacs equation, in Sobolev and Hölder spaces. Although the Isaacs operator lacks convexity, approximation methods are capable of producing Hölder continuity for the Hessian of the solutions by connecting the problem with a Bellman equation. To complete the book, degenerate models are studied and their optimal regularity is described |
Beschreibung: | Title from publisher's bibliographic system (viewed on 20 Jun 2022) |
Beschreibung: | 1 Online-Ressource (xi, 190 Seiten) |
ISBN: | 9781009099899 |
DOI: | 10.1017/9781009099899 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048378878 | ||
003 | DE-604 | ||
005 | 20220727 | ||
007 | cr|uuu---uuuuu | ||
008 | 220727s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781009099899 |c Online |9 978-1-00-909989-9 | ||
024 | 7 | |a 10.1017/9781009099899 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009099899 | ||
035 | |a (OCoLC)1339064918 | ||
035 | |a (DE-599)BVBBV048378878 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-473 | ||
082 | 0 | |a 515.353 | |
084 | |a SK 540 |0 (DE-625)143245: |2 rvk | ||
100 | 1 | |a Pimentel, Edgard A. |d ca. 20./21. Jh. |0 (DE-588)1248568915 |4 aut | |
245 | 1 | 0 | |a Elliptic regularity theory by approximation methods |c Edgard A. Pimentel |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (xi, 190 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a London Mathematical Society lecture note series | |
490 | 0 | |a 477 | |
500 | |a Title from publisher's bibliographic system (viewed on 20 Jun 2022) | ||
520 | |a Presenting the basics of elliptic PDEs in connection with regularity theory, the book bridges fundamental breakthroughs - such as the Krylov-Safonov and Evans-Krylov results, Caffarelli's regularity theory, and the counterexamples due to Nadirashvili and Vlăduţ - and modern developments, including improved regularity for flat solutions and the partial regularity result. After presenting this general panorama, accounting for the subtleties surrounding C-viscosity and Lp-viscosity solutions, the book examines important models through approximation methods. The analysis continues with the asymptotic approach, based on the recession operator. After that, approximation techniques produce a regularity theory for the Isaacs equation, in Sobolev and Hölder spaces. Although the Isaacs operator lacks convexity, approximation methods are capable of producing Hölder continuity for the Hessian of the solutions by connecting the problem with a Bellman equation. To complete the book, degenerate models are studied and their optimal regularity is described | ||
650 | 4 | |a Partial differential equations | |
650 | 4 | |a alculus of variations | |
650 | 0 | 7 | |a Regularität |0 (DE-588)4049074-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptisches System |0 (DE-588)4121184-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elliptisches System |0 (DE-588)4121184-4 |D s |
689 | 0 | 1 | |a Regularität |0 (DE-588)4049074-9 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-00-909666-9 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009099899 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033757770 | ||
966 | e | |u https://doi.org/10.1017/9781009099899 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009099899 |l BTU01 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009099899 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009099899 |l UBG01 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184258480177152 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Pimentel, Edgard A. ca. 20./21. Jh |
author_GND | (DE-588)1248568915 |
author_facet | Pimentel, Edgard A. ca. 20./21. Jh |
author_role | aut |
author_sort | Pimentel, Edgard A. ca. 20./21. Jh |
author_variant | e a p ea eap |
building | Verbundindex |
bvnumber | BV048378878 |
classification_rvk | SK 540 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009099899 (OCoLC)1339064918 (DE-599)BVBBV048378878 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781009099899 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03189nmm a2200517zc 4500</leader><controlfield tag="001">BV048378878</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220727 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220727s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009099899</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-909989-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009099899</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009099899</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1339064918</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048378878</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pimentel, Edgard A.</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1248568915</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic regularity theory by approximation methods</subfield><subfield code="c">Edgard A. Pimentel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xi, 190 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">477</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 20 Jun 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Presenting the basics of elliptic PDEs in connection with regularity theory, the book bridges fundamental breakthroughs - such as the Krylov-Safonov and Evans-Krylov results, Caffarelli's regularity theory, and the counterexamples due to Nadirashvili and Vlăduţ - and modern developments, including improved regularity for flat solutions and the partial regularity result. After presenting this general panorama, accounting for the subtleties surrounding C-viscosity and Lp-viscosity solutions, the book examines important models through approximation methods. The analysis continues with the asymptotic approach, based on the recession operator. After that, approximation techniques produce a regularity theory for the Isaacs equation, in Sobolev and Hölder spaces. Although the Isaacs operator lacks convexity, approximation methods are capable of producing Hölder continuity for the Hessian of the solutions by connecting the problem with a Bellman equation. To complete the book, degenerate models are studied and their optimal regularity is described</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial differential equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">alculus of variations</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regularität</subfield><subfield code="0">(DE-588)4049074-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptisches System</subfield><subfield code="0">(DE-588)4121184-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elliptisches System</subfield><subfield code="0">(DE-588)4121184-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Regularität</subfield><subfield code="0">(DE-588)4049074-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-00-909666-9</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009099899</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033757770</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009099899</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009099899</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009099899</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009099899</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048378878 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:18:06Z |
indexdate | 2024-07-10T09:36:29Z |
institution | BVB |
isbn | 9781009099899 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033757770 |
oclc_num | 1339064918 |
open_access_boolean | |
owner | DE-12 DE-92 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-92 DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (xi, 190 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
series2 | London Mathematical Society lecture note series 477 |
spelling | Pimentel, Edgard A. ca. 20./21. Jh. (DE-588)1248568915 aut Elliptic regularity theory by approximation methods Edgard A. Pimentel Cambridge Cambridge University Press 2022 1 Online-Ressource (xi, 190 Seiten) txt rdacontent c rdamedia cr rdacarrier London Mathematical Society lecture note series 477 Title from publisher's bibliographic system (viewed on 20 Jun 2022) Presenting the basics of elliptic PDEs in connection with regularity theory, the book bridges fundamental breakthroughs - such as the Krylov-Safonov and Evans-Krylov results, Caffarelli's regularity theory, and the counterexamples due to Nadirashvili and Vlăduţ - and modern developments, including improved regularity for flat solutions and the partial regularity result. After presenting this general panorama, accounting for the subtleties surrounding C-viscosity and Lp-viscosity solutions, the book examines important models through approximation methods. The analysis continues with the asymptotic approach, based on the recession operator. After that, approximation techniques produce a regularity theory for the Isaacs equation, in Sobolev and Hölder spaces. Although the Isaacs operator lacks convexity, approximation methods are capable of producing Hölder continuity for the Hessian of the solutions by connecting the problem with a Bellman equation. To complete the book, degenerate models are studied and their optimal regularity is described Partial differential equations alculus of variations Regularität (DE-588)4049074-9 gnd rswk-swf Elliptisches System (DE-588)4121184-4 gnd rswk-swf Elliptisches System (DE-588)4121184-4 s Regularität (DE-588)4049074-9 s DE-604 Erscheint auch als Druck-Ausgabe 978-1-00-909666-9 https://doi.org/10.1017/9781009099899 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Pimentel, Edgard A. ca. 20./21. Jh Elliptic regularity theory by approximation methods Partial differential equations alculus of variations Regularität (DE-588)4049074-9 gnd Elliptisches System (DE-588)4121184-4 gnd |
subject_GND | (DE-588)4049074-9 (DE-588)4121184-4 |
title | Elliptic regularity theory by approximation methods |
title_auth | Elliptic regularity theory by approximation methods |
title_exact_search | Elliptic regularity theory by approximation methods |
title_exact_search_txtP | Elliptic regularity theory by approximation methods |
title_full | Elliptic regularity theory by approximation methods Edgard A. Pimentel |
title_fullStr | Elliptic regularity theory by approximation methods Edgard A. Pimentel |
title_full_unstemmed | Elliptic regularity theory by approximation methods Edgard A. Pimentel |
title_short | Elliptic regularity theory by approximation methods |
title_sort | elliptic regularity theory by approximation methods |
topic | Partial differential equations alculus of variations Regularität (DE-588)4049074-9 gnd Elliptisches System (DE-588)4121184-4 gnd |
topic_facet | Partial differential equations alculus of variations Regularität Elliptisches System |
url | https://doi.org/10.1017/9781009099899 |
work_keys_str_mv | AT pimenteledgarda ellipticregularitytheorybyapproximationmethods |