Artificial Intelligence in Proactive Road Infrastructure Safety Management: Summary and Conclusions
This report examines and determines the most relevant cases for artificial intelligence (AI) use in a transport planning context for crash prevention on an entire road network. It explores the possibility of using computer vision to acquire relevant information and the capability of computer models...
Gespeichert in:
Körperschaft: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Paris
OECD Publishing
2021
|
Schriftenreihe: | ITF Roundtable Reports
no.187 |
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | This report examines and determines the most relevant cases for artificial intelligence (AI) use in a transport planning context for crash prevention on an entire road network. It explores the possibility of using computer vision to acquire relevant information and the capability of computer models to map high-risk locations. It offers recommendations to stakeholders on the development and appropriate use of life-saving AI solutions |
Beschreibung: | 1 Online-Ressource (36 Seiten) 21 x 28cm |
ISBN: | 9789282155721 |
DOI: | 10.1787/04509d3f-en |
Internformat
MARC
LEADER | 00000nam a22000001cb4500 | ||
---|---|---|---|
001 | BV048368323 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220720s2021 xx o|||| 00||| eng d | ||
020 | |a 9789282155721 |9 978-92-821-5572-1 | ||
024 | 7 | |a 10.1787/04509d3f-en |2 doi | |
035 | |a (ZDB-13-SOC)077478487 | ||
035 | |a (OCoLC)1337141429 | ||
035 | |a (DE-599)KEP077478487 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-91 |a DE-473 |a DE-824 |a DE-29 |a DE-739 |a DE-355 |a DE-20 |a DE-1028 |a DE-1049 |a DE-188 |a DE-521 |a DE-861 |a DE-898 |a DE-92 |a DE-573 |a DE-19 | ||
110 | 2 | |a International Transport Forum |4 cre | |
245 | 1 | 0 | |a Artificial Intelligence in Proactive Road Infrastructure Safety Management |b Summary and Conclusions |c International Transport Forum |
264 | 1 | |a Paris |b OECD Publishing |c 2021 | |
300 | |a 1 Online-Ressource (36 Seiten) |c 21 x 28cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a ITF Roundtable Reports |v no.187 | |
520 | 3 | |a This report examines and determines the most relevant cases for artificial intelligence (AI) use in a transport planning context for crash prevention on an entire road network. It explores the possibility of using computer vision to acquire relevant information and the capability of computer models to map high-risk locations. It offers recommendations to stakeholders on the development and appropriate use of life-saving AI solutions | |
650 | 4 | |a Transport | |
856 | 4 | 0 | |u https://doi.org/10.1787/04509d3f-en |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-13-SOC | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033747403 |
Datensatz im Suchindex
_version_ | 1818896521844752384 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author_corporate | International Transport Forum |
author_corporate_role | cre |
author_facet | International Transport Forum |
author_sort | International Transport Forum |
building | Verbundindex |
bvnumber | BV048368323 |
collection | ZDB-13-SOC |
ctrlnum | (ZDB-13-SOC)077478487 (OCoLC)1337141429 (DE-599)KEP077478487 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1787/04509d3f-en |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001cb4500</leader><controlfield tag="001">BV048368323</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220720s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789282155721</subfield><subfield code="9">978-92-821-5572-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1787/04509d3f-en</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-13-SOC)077478487</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1337141429</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP077478487</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="110" ind1="2" ind2=" "><subfield code="a">International Transport Forum</subfield><subfield code="4">cre</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Artificial Intelligence in Proactive Road Infrastructure Safety Management</subfield><subfield code="b">Summary and Conclusions</subfield><subfield code="c">International Transport Forum</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Paris</subfield><subfield code="b">OECD Publishing</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (36 Seiten)</subfield><subfield code="c">21 x 28cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">ITF Roundtable Reports</subfield><subfield code="v">no.187</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">This report examines and determines the most relevant cases for artificial intelligence (AI) use in a transport planning context for crash prevention on an entire road network. It explores the possibility of using computer vision to acquire relevant information and the capability of computer models to map high-risk locations. It offers recommendations to stakeholders on the development and appropriate use of life-saving AI solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transport</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1787/04509d3f-en</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-13-SOC</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033747403</subfield></datafield></record></collection> |
id | DE-604.BV048368323 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:16:02Z |
indexdate | 2024-12-19T19:01:37Z |
institution | BVB |
isbn | 9789282155721 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033747403 |
oclc_num | 1337141429 |
open_access_boolean | 1 |
owner | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
owner_facet | DE-384 DE-91 DE-BY-TUM DE-473 DE-BY-UBG DE-824 DE-29 DE-739 DE-355 DE-BY-UBR DE-20 DE-1028 DE-1049 DE-188 DE-521 DE-861 DE-898 DE-BY-UBR DE-92 DE-573 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (36 Seiten) 21 x 28cm |
psigel | ZDB-13-SOC |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | OECD Publishing |
record_format | marc |
series2 | ITF Roundtable Reports |
spelling | International Transport Forum cre Artificial Intelligence in Proactive Road Infrastructure Safety Management Summary and Conclusions International Transport Forum Paris OECD Publishing 2021 1 Online-Ressource (36 Seiten) 21 x 28cm txt rdacontent c rdamedia cr rdacarrier ITF Roundtable Reports no.187 This report examines and determines the most relevant cases for artificial intelligence (AI) use in a transport planning context for crash prevention on an entire road network. It explores the possibility of using computer vision to acquire relevant information and the capability of computer models to map high-risk locations. It offers recommendations to stakeholders on the development and appropriate use of life-saving AI solutions Transport https://doi.org/10.1787/04509d3f-en Verlag kostenfrei Volltext |
spellingShingle | Artificial Intelligence in Proactive Road Infrastructure Safety Management Summary and Conclusions Transport |
title | Artificial Intelligence in Proactive Road Infrastructure Safety Management Summary and Conclusions |
title_auth | Artificial Intelligence in Proactive Road Infrastructure Safety Management Summary and Conclusions |
title_exact_search | Artificial Intelligence in Proactive Road Infrastructure Safety Management Summary and Conclusions |
title_exact_search_txtP | Artificial Intelligence in Proactive Road Infrastructure Safety Management Summary and Conclusions |
title_full | Artificial Intelligence in Proactive Road Infrastructure Safety Management Summary and Conclusions International Transport Forum |
title_fullStr | Artificial Intelligence in Proactive Road Infrastructure Safety Management Summary and Conclusions International Transport Forum |
title_full_unstemmed | Artificial Intelligence in Proactive Road Infrastructure Safety Management Summary and Conclusions International Transport Forum |
title_short | Artificial Intelligence in Proactive Road Infrastructure Safety Management |
title_sort | artificial intelligence in proactive road infrastructure safety management summary and conclusions |
title_sub | Summary and Conclusions |
topic | Transport |
topic_facet | Transport |
url | https://doi.org/10.1787/04509d3f-en |
work_keys_str_mv | AT internationaltransportforum artificialintelligenceinproactiveroadinfrastructuresafetymanagementsummaryandconclusions |