Data-Intensive Computing in Smart Microgrids:
Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid adva...
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel, Switzerland
MDPI - Multidisciplinary Digital Publishing Institute
[2021]
|
Schlagworte: | |
Online-Zugang: | Volltext kostenfrei |
Zusammenfassung: | Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area |
Beschreibung: | This is a reprint of articles from the Special Issue published online in the open access journal Energies (ISSN 1996-1073) (available at: https://www.mdpi.com/journal/energies/special issues/ data-intensive computing smart microgrids). |
Beschreibung: | 1 Online-Ressource (238 p.) |
ISBN: | 9783036516288 |
DOI: | 10.3390/books978-3-0365-1628-8 |
Internformat
MARC
LEADER | 00000nam a22000001c 4500 | ||
---|---|---|---|
001 | BV048357029 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220713s2021 xx o|||| 00||| eng d | ||
020 | |a 9783036516288 |9 978-3-0365-1628-8 | ||
024 | 7 | |a 10.3390/books978-3-0365-1628-8 |2 doi | |
024 | 7 | |a 20.500.12854/76778 |2 hdl | |
035 | |a (OCoLC)1337135307 | ||
035 | |a (DE-599)KEP076845605 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-210 |a DE-521 |a DE-1102 |a DE-1046 |a DE-1028 |a DE-1050 |a DE-573 |a DE-M347 |a DE-92 |a DE-1051 |a DE-898 |a DE-859 |a DE-860 |a DE-1049 |a DE-861 |a DE-863 |a DE-862 |a DE-Re13 |a DE-Y3 |a DE-255 |a DE-Y7 |a DE-Y2 |a DE-70 |a DE-2174 |a DE-127 |a DE-22 |a DE-155 |a DE-91 |a DE-384 |a DE-473 |a DE-19 |a DE-355 |a DE-703 |a DE-20 |a DE-706 |a DE-824 |a DE-29 |a DE-739 | ||
100 | 1 | |a Herodotou, Herodotos |4 edt | |
245 | 1 | 0 | |a Data-Intensive Computing in Smart Microgrids |c edited by Herodotos Herodotou |
264 | 1 | |a Basel, Switzerland |b MDPI - Multidisciplinary Digital Publishing Institute |c [2021] | |
264 | 4 | |c © 2021 | |
300 | |a 1 Online-Ressource (238 p.) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a This is a reprint of articles from the Special Issue published online in the open access journal Energies (ISSN 1996-1073) (available at: https://www.mdpi.com/journal/energies/special issues/ data-intensive computing smart microgrids). | ||
520 | 3 | |a Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area | |
653 | 0 | |a Technology: general issues | |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-3-0365-1627-1 |
856 | 4 | 0 | |u https://doi.org/10.3390/books978-3-0365-1628-8 |x Verlag |z kostenfrei |3 Volltext |
856 | 4 | 0 | |m X:DOAB |u https://directory.doabooks.org/handle/20.500.12854/76778 |x Verlag |z kostenfrei |
912 | |a ZDB-94-OAB | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033736286 |
Datensatz im Suchindex
_version_ | 1824556111533965312 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author2 | Herodotou, Herodotos |
author2_role | edt |
author2_variant | h h hh |
author_facet | Herodotou, Herodotos |
building | Verbundindex |
bvnumber | BV048357029 |
collection | ZDB-94-OAB |
ctrlnum | (OCoLC)1337135307 (DE-599)KEP076845605 |
doi_str_mv | 10.3390/books978-3-0365-1628-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000001c 4500</leader><controlfield tag="001">BV048357029</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220713s2021 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783036516288</subfield><subfield code="9">978-3-0365-1628-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.3390/books978-3-0365-1628-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">20.500.12854/76778</subfield><subfield code="2">hdl</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1337135307</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KEP076845605</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-210</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-1102</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1028</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-861</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-Y3</subfield><subfield code="a">DE-255</subfield><subfield code="a">DE-Y7</subfield><subfield code="a">DE-Y2</subfield><subfield code="a">DE-70</subfield><subfield code="a">DE-2174</subfield><subfield code="a">DE-127</subfield><subfield code="a">DE-22</subfield><subfield code="a">DE-155</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-384</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-739</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Herodotou, Herodotos</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Data-Intensive Computing in Smart Microgrids</subfield><subfield code="c">edited by Herodotos Herodotou</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel, Switzerland</subfield><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">[2021]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (238 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is a reprint of articles from the Special Issue published online in the open access journal Energies (ISSN 1996-1073) (available at: https://www.mdpi.com/journal/energies/special issues/ data-intensive computing smart microgrids).</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Technology: general issues</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-3-0365-1627-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.3390/books978-3-0365-1628-8</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="m">X:DOAB</subfield><subfield code="u">https://directory.doabooks.org/handle/20.500.12854/76778</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-94-OAB</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033736286</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV048357029 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:13:48Z |
indexdate | 2025-02-20T07:18:22Z |
institution | BVB |
isbn | 9783036516288 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033736286 |
oclc_num | 1337135307 |
open_access_boolean | 1 |
owner | DE-12 DE-210 DE-521 DE-1102 DE-1046 DE-1028 DE-1050 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-BY-UBR DE-859 DE-860 DE-1049 DE-861 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-Re13 DE-BY-UBR DE-Y3 DE-255 DE-Y7 DE-Y2 DE-70 DE-2174 DE-127 DE-22 DE-BY-UBG DE-155 DE-BY-UBR DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-739 |
owner_facet | DE-12 DE-210 DE-521 DE-1102 DE-1046 DE-1028 DE-1050 DE-573 DE-M347 DE-92 DE-1051 DE-898 DE-BY-UBR DE-859 DE-860 DE-1049 DE-861 DE-863 DE-BY-FWS DE-862 DE-BY-FWS DE-Re13 DE-BY-UBR DE-Y3 DE-255 DE-Y7 DE-Y2 DE-70 DE-2174 DE-127 DE-22 DE-BY-UBG DE-155 DE-BY-UBR DE-91 DE-BY-TUM DE-384 DE-473 DE-BY-UBG DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-20 DE-706 DE-824 DE-29 DE-739 |
physical | 1 Online-Ressource (238 p.) |
psigel | ZDB-94-OAB |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
publisher | MDPI - Multidisciplinary Digital Publishing Institute |
record_format | marc |
spellingShingle | Data-Intensive Computing in Smart Microgrids |
subject_GND | (DE-588)4143413-4 |
title | Data-Intensive Computing in Smart Microgrids |
title_auth | Data-Intensive Computing in Smart Microgrids |
title_exact_search | Data-Intensive Computing in Smart Microgrids |
title_exact_search_txtP | Data-Intensive Computing in Smart Microgrids |
title_full | Data-Intensive Computing in Smart Microgrids edited by Herodotos Herodotou |
title_fullStr | Data-Intensive Computing in Smart Microgrids edited by Herodotos Herodotou |
title_full_unstemmed | Data-Intensive Computing in Smart Microgrids edited by Herodotos Herodotou |
title_short | Data-Intensive Computing in Smart Microgrids |
title_sort | data intensive computing in smart microgrids |
topic_facet | Aufsatzsammlung |
url | https://doi.org/10.3390/books978-3-0365-1628-8 https://directory.doabooks.org/handle/20.500.12854/76778 |
work_keys_str_mv | AT herodotouherodotos dataintensivecomputinginsmartmicrogrids |