Mathematical Feynman path integrals and their applications:
"Feynman path integrals are ubiquitous in quantum physics, even if a large part of the scientific community still considers them as a heuristic tool that lacks a sound mathematical definition. Our book aims to refute this prejudice, providing an extensive and self-contained description of the m...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Singapore ; Hackensack ; London
World Scientific Publishing
[2022]
|
Ausgabe: | Second edition |
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis |
Zusammenfassung: | "Feynman path integrals are ubiquitous in quantum physics, even if a large part of the scientific community still considers them as a heuristic tool that lacks a sound mathematical definition. Our book aims to refute this prejudice, providing an extensive and self-contained description of the mathematical theory of Feynman path integration, from the earlier attempts to the latest developments, as well as its applications to quantum mechanics. This second edition presents a detailed discussion of the general theory of complex integration on infinite dimensional spaces, providing on one hand a unified view of the various existing approaches to the mathematical construction of Feynman path integrals and on the other hand a connection with the classical theory of stochastic processes. Moreover, new chapters containing recent applications to several dynamical systems have been added. This book bridges between the realms of stochastic analysis and the theory of Feynman path integration. It is accessible to both mathematicians and physicists"-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xiii, 345 Seiten |
ISBN: | 9789811214783 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048325554 | ||
003 | DE-604 | ||
005 | 20220818 | ||
007 | t | ||
008 | 220712s2022 |||| 00||| eng d | ||
020 | |a 9789811214783 |c hardcover |9 978-981-12-1478-3 | ||
024 | 3 | |a 9789811214783 | |
035 | |a (OCoLC)1344245040 | ||
035 | |a (DE-599)KXP1768269491 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-19 | ||
082 | 0 | |a 530.12 | |
084 | |a SK 350 |0 (DE-625)143233: |2 rvk | ||
084 | |a SK 600 |0 (DE-625)143248: |2 rvk | ||
084 | |a 33.24 |2 bkl | ||
084 | |a 31.46 |2 bkl | ||
100 | 1 | |a Mazzucchi, Sonia |d 1976- |e Verfasser |0 (DE-588)1126658634 |4 aut | |
245 | 1 | 0 | |a Mathematical Feynman path integrals and their applications |c Sonia Mazzucchi, University of Trento, Italy |
250 | |a Second edition | ||
264 | 1 | |a Singapore ; Hackensack ; London |b World Scientific Publishing |c [2022] | |
300 | |a xiii, 345 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a "Feynman path integrals are ubiquitous in quantum physics, even if a large part of the scientific community still considers them as a heuristic tool that lacks a sound mathematical definition. Our book aims to refute this prejudice, providing an extensive and self-contained description of the mathematical theory of Feynman path integration, from the earlier attempts to the latest developments, as well as its applications to quantum mechanics. This second edition presents a detailed discussion of the general theory of complex integration on infinite dimensional spaces, providing on one hand a unified view of the various existing approaches to the mathematical construction of Feynman path integrals and on the other hand a connection with the classical theory of stochastic processes. Moreover, new chapters containing recent applications to several dynamical systems have been added. This book bridges between the realms of stochastic analysis and the theory of Feynman path integration. It is accessible to both mathematicians and physicists"-- | |
650 | 0 | 7 | |a Pfadintegral |0 (DE-588)4173973-5 |2 gnd |9 rswk-swf |
653 | 0 | |a Feynman integrals | |
689 | 0 | 0 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 0 | |5 DE-604 | |
776 | 0 | |z 9789811214790 |c (ebook) | |
776 | 0 | |z 9789811214806 |c (ebook other) | |
856 | 4 | 2 | |m B:DE-89 |m V:DE-601 |q pdf/application |u https://www.gbv.de/dms/tib-ub-hannover/1768269491.pdf |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033704839 |
Datensatz im Suchindex
_version_ | 1804184185022185472 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Mazzucchi, Sonia 1976- |
author_GND | (DE-588)1126658634 |
author_facet | Mazzucchi, Sonia 1976- |
author_role | aut |
author_sort | Mazzucchi, Sonia 1976- |
author_variant | s m sm |
building | Verbundindex |
bvnumber | BV048325554 |
classification_rvk | SK 350 SK 600 |
ctrlnum | (OCoLC)1344245040 (DE-599)KXP1768269491 |
dewey-full | 530.12 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.12 |
dewey-search | 530.12 |
dewey-sort | 3530.12 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
discipline_str_mv | Physik Mathematik |
edition | Second edition |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02572nam a2200445 c 4500</leader><controlfield tag="001">BV048325554</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220818 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220712s2022 |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811214783</subfield><subfield code="c">hardcover</subfield><subfield code="9">978-981-12-1478-3</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9789811214783</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1344245040</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1768269491</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.12</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 600</subfield><subfield code="0">(DE-625)143248:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.24</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.46</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mazzucchi, Sonia</subfield><subfield code="d">1976-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1126658634</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical Feynman path integrals and their applications</subfield><subfield code="c">Sonia Mazzucchi, University of Trento, Italy</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore ; Hackensack ; London</subfield><subfield code="b">World Scientific Publishing</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiii, 345 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Feynman path integrals are ubiquitous in quantum physics, even if a large part of the scientific community still considers them as a heuristic tool that lacks a sound mathematical definition. Our book aims to refute this prejudice, providing an extensive and self-contained description of the mathematical theory of Feynman path integration, from the earlier attempts to the latest developments, as well as its applications to quantum mechanics. This second edition presents a detailed discussion of the general theory of complex integration on infinite dimensional spaces, providing on one hand a unified view of the various existing approaches to the mathematical construction of Feynman path integrals and on the other hand a connection with the classical theory of stochastic processes. Moreover, new chapters containing recent applications to several dynamical systems have been added. This book bridges between the realms of stochastic analysis and the theory of Feynman path integration. It is accessible to both mathematicians and physicists"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Feynman integrals</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9789811214790</subfield><subfield code="c">(ebook)</subfield></datafield><datafield tag="776" ind1="0" ind2=" "><subfield code="z">9789811214806</subfield><subfield code="c">(ebook other)</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-89</subfield><subfield code="m">V:DE-601</subfield><subfield code="q">pdf/application</subfield><subfield code="u">https://www.gbv.de/dms/tib-ub-hannover/1768269491.pdf</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033704839</subfield></datafield></record></collection> |
id | DE-604.BV048325554 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:12:57Z |
indexdate | 2024-07-10T09:35:19Z |
institution | BVB |
isbn | 9789811214783 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033704839 |
oclc_num | 1344245040 |
open_access_boolean | |
owner | DE-19 DE-BY-UBM |
owner_facet | DE-19 DE-BY-UBM |
physical | xiii, 345 Seiten |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | World Scientific Publishing |
record_format | marc |
spelling | Mazzucchi, Sonia 1976- Verfasser (DE-588)1126658634 aut Mathematical Feynman path integrals and their applications Sonia Mazzucchi, University of Trento, Italy Second edition Singapore ; Hackensack ; London World Scientific Publishing [2022] xiii, 345 Seiten txt rdacontent n rdamedia nc rdacarrier Includes bibliographical references and index "Feynman path integrals are ubiquitous in quantum physics, even if a large part of the scientific community still considers them as a heuristic tool that lacks a sound mathematical definition. Our book aims to refute this prejudice, providing an extensive and self-contained description of the mathematical theory of Feynman path integration, from the earlier attempts to the latest developments, as well as its applications to quantum mechanics. This second edition presents a detailed discussion of the general theory of complex integration on infinite dimensional spaces, providing on one hand a unified view of the various existing approaches to the mathematical construction of Feynman path integrals and on the other hand a connection with the classical theory of stochastic processes. Moreover, new chapters containing recent applications to several dynamical systems have been added. This book bridges between the realms of stochastic analysis and the theory of Feynman path integration. It is accessible to both mathematicians and physicists"-- Pfadintegral (DE-588)4173973-5 gnd rswk-swf Feynman integrals Pfadintegral (DE-588)4173973-5 s DE-604 9789811214790 (ebook) 9789811214806 (ebook other) B:DE-89 V:DE-601 pdf/application https://www.gbv.de/dms/tib-ub-hannover/1768269491.pdf Inhaltsverzeichnis |
spellingShingle | Mazzucchi, Sonia 1976- Mathematical Feynman path integrals and their applications Pfadintegral (DE-588)4173973-5 gnd |
subject_GND | (DE-588)4173973-5 |
title | Mathematical Feynman path integrals and their applications |
title_auth | Mathematical Feynman path integrals and their applications |
title_exact_search | Mathematical Feynman path integrals and their applications |
title_exact_search_txtP | Mathematical Feynman path integrals and their applications |
title_full | Mathematical Feynman path integrals and their applications Sonia Mazzucchi, University of Trento, Italy |
title_fullStr | Mathematical Feynman path integrals and their applications Sonia Mazzucchi, University of Trento, Italy |
title_full_unstemmed | Mathematical Feynman path integrals and their applications Sonia Mazzucchi, University of Trento, Italy |
title_short | Mathematical Feynman path integrals and their applications |
title_sort | mathematical feynman path integrals and their applications |
topic | Pfadintegral (DE-588)4173973-5 gnd |
topic_facet | Pfadintegral |
url | https://www.gbv.de/dms/tib-ub-hannover/1768269491.pdf |
work_keys_str_mv | AT mazzucchisonia mathematicalfeynmanpathintegralsandtheirapplications |