2D functional nanomaterials: synthesis, characterization, and applications
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2022]
|
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34677-6/ Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | xxiii, 422 Seiten Illustrationen, Diagramme 25 cm, 1012 g |
ISBN: | 9783527346776 3527346775 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048325248 | ||
003 | DE-604 | ||
005 | 20230628 | ||
007 | t | ||
008 | 220712s2022 gw a||| |||| 00||| eng d | ||
015 | |a 21,N20 |2 dnb | ||
015 | |a 22,A06 |2 dnb | ||
016 | 7 | |a 1233374613 |2 DE-101 | |
020 | |a 9783527346776 |c Festeinband : circa EUR 149.00 (DE) (freier Preis) |9 978-3-527-34677-6 | ||
020 | |a 3527346775 |9 3-527-34677-5 | ||
024 | 3 | |a 9783527346776 | |
028 | 5 | 2 | |a Bestellnummer: 1134677 000 |
035 | |a (OCoLC)1339062960 | ||
035 | |a (DE-599)DNB1233374613 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-703 |a DE-20 | ||
082 | 0 | 4 | |a 620.115 |2 23/ger |
084 | |a VE 9850 |0 (DE-625)147163:253 |2 rvk | ||
084 | |a ZN 3700 |0 (DE-625)157333: |2 rvk | ||
084 | |8 1\p |a 620 |2 23sdnb | ||
245 | 1 | 0 | |a 2D functional nanomaterials |b synthesis, characterization, and applications |c edited by Ganesh S. Kamble |
246 | 1 | 3 | |a TwoD functional nanomaterials |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2022] | |
300 | |a xxiii, 422 Seiten |b Illustrationen, Diagramme |c 25 cm, 1012 g | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Dimension 2 |0 (DE-588)4321721-7 |2 gnd |9 rswk-swf |
653 | |a Anorganische Strukturen | ||
653 | |a Chemie | ||
653 | |a Chemistry | ||
653 | |a Electronic Materials | ||
653 | |a Elektronische Materialien | ||
653 | |a Energie | ||
653 | |a Energiespeicherung | ||
653 | |a Energy | ||
653 | |a Energy Storage | ||
653 | |a Funktionale Nanomaterialien | ||
653 | |a Inorganic Structures | ||
653 | |a Materials Science | ||
653 | |a Materialwissenschaften | ||
653 | |a CH74: Anorganische Strukturen | ||
653 | |a EG04: Energiespeicherung | ||
653 | |a MS40: Elektronische Materialien | ||
653 | |a Festkörperchemie | ||
653 | |a Solid State Chemistry | ||
653 | |a CH92: Festkörperchemie | ||
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Nanostrukturiertes Material |0 (DE-588)4342626-8 |D s |
689 | 0 | 1 | |a Dimension 2 |0 (DE-588)4321721-7 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Kamble, Ganesh S. |0 (DE-588)1248069056 |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-82395-6 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-82394-9 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-3-527-82396-3 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34677-6/ |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1233374613/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033704536&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033704536 | ||
883 | 2 | |8 1\p |a dnb |d 20220204 |q DE-101 |u https://d-nb.info/provenance/plan#dnb |
Datensatz im Suchindex
_version_ | 1804184184536694785 |
---|---|
adam_text | CONTENTS
FOREWORD
XVII
PREFACE
XA
1
GRAPHENE
CHEMICAL
DERIVATIVES
SYNTHESIS
AND
APPLICATIONS:
STATE-OF-THE-ART
AND
PERSPECTIVES
1
MAXIM
K.
RABCHINSKII,
MAKSIM
V.
GUDKOV,
AND
DINA
YU.
STOLYAROVA
1.1
1.2
1.3
1.4
1.5
INTRODUCTION
1
GRAPHENE
OXIDE:
SYNTHESIS
METHODS
AND
CHEMISTRY
ALTERATION
3
GRAPHENE
OXIDE
REDUCTION
AND
FUNCTIONALIZATION
6
APPLICATIONS
OF
CMGS
13
CONCLUDING
REMARKS
15
ACKNOWLEDGMENTS
15
REFERENCES
16
2
2D/2D
GRAPHENE
OXIDE-LAYERED
DOUBLE
HYDROXIDE
NANOCOMPOSITE
FOR
THE
IMMOBILIZATION
OF
DIFFERENT
RADIONUCLIDES
21
PAULMANICKAM
KOILRAJ
AND
KEIKO
SASAKI
2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3
2.4
INTRODUCTION
21
SYNTHESIS
OF
GO/LDH
COMPOSITE
22
CO-PRECIPITATION
22
HYDROTHERMAL
PREPARATION
23
SELF-ASSEMBLY
OF
LDH
NANOSHEETS
WITH
GO
NANOSHEETS
24
REMOVAL
OF
RADIONUCLIDES
24
U(VI)
REMOVAL
24
SORPTION
OF
EU(III)
WITH
THE
PRESENCE
OF
GO
ON
LDH
25
CO-REMEDIATION
ANIONIC
SEO
4
2
AND
CATIONIC
SR
2+
26
CONCLUSION
29
REFERENCES
29
VI
CONTENTS
3
2D
NANOMATERIALS
FOR
BIOMEDICAL
APPLICATIONS
31
POLIRAJU
KALLURU
AND
RAVIRAJ
VANKAYALA
3.1
INTRODUCTION
31
3.1.1
PHOTOTHERMAL
AND
PHOTODYNAMIC
THERAPY
31
3.1.2
BIOIMAGING
AND
DRUG/GENE
DELIVERY
34
3.1.3
BIOSENSORS
37
3.1.4
ANTIBACTERIAL
ACTIVITY
39
3.1.5
TISSUE
ENGINEERING
AND
REGENERATIVE
MEDICINE
41
3.2
CONCLUSIONS
43
REFERENCES
43
4
NOVEL
TWO-DIMENSIONAL
NANOMATERIALS
FOR
NEXT-GENERATION
PHOTODETECTORS
47
KHURELBAATAR
ZAGARZUSEM
AND
ZUMUUKHOROL
MUNKHSAIKHAN
4.1
INTRODUCTION
47
4.2
2D
MATERIALS
FOR
PDS
49
4.2.1
GRAPHENE
49
4.2.2
TMDS
(TRANSITION
METAL
DICHALCOGENIDES)
49
4.2.3
MXENES
(2D
TRANSITION
METAL
CARBIDES/NITRIDES)
50
4.2.4
XENES
(MONOELEMENTAL
2D
MATERIALS)
50
4.3
THE
PHYSICAL
MECHANISM
ENABLING
PHOTODETECTION
50
4.4
CHARACTERIZATION
PARAMETERS
FOR
PHOTODETECTORS
51
4.4.1
RESPONSIVITY
51
4.4.2
DETECTIVITY
52
4.4.3
EXTERNAL
QUANTUM
EFFICIENCY
52
4.4.4
GAIN
52
4.4.5
RESPONSE
TIME
52
4.4.6
NOISE
EQUIVALENT
POWER
52
4.5
SYNTHESIS
METHODS
FOR
2D
MATERIALS
53
4.5.1
MECHANICAL
EXFOLIATION
53
4.5.2
LIQUID EXFOLIATION
53
4.5.3
CHEMICAL
VAPOR
DEPOSITION
(CVD)
53
4.6
PHOTODETECTORS
BASED
ON
2D
MATERIALS
55
4.6.1
PHOTODETECTORS
BASED
ON
GRAPHENE
55
4.6.2
PHOTODETECTORS
BASED
ON
MOS
2
55
4.6.3
PHOTODETECTORS
BASED
ON
BP
55
4.7
PHOTODETECTORS
BASED
ON
2D
HETEROSTRUCTURES
56
4.8
CONCLUSIONS
AND
OUTLOOK
58
REFERENCES
58
5
2D
NANOMATERIALS
FOR
CANCER
THERAPY
63
NARESH
KUTHALA
5.1
INTRODUCTION
63
5.2
2D
NANOMATERIALS
FOR
CANCER
THERAPY
64
5.2.1
2D
NANOMATERIALS
FOR
COMBINATION
PTT
WITH
PDT
64
CONTENTS
VII
5.2.2
2D-NANOMATERIALS
FOR
COMBINATION
PTT
THERAPY
WITH
RADIOTHERAPY
(RT)
68
5.2.3
2D
NANOMATERIALS
FOR
COMBINATION
PTT
THERAPY
WITH
SONODYNAMIC
THERAPY
(SDT)
70
5.2.4
2D
NANOMATERIALS
FOR
COMBINATION
PTT
THERAPY
WITH
IMMUNE
THERAPY
(IMT)
73
5.3
SUMMARY
AND
FUTURE
PERSPECTIVES
76
REFERENCES
76
6
GRAPHENE
AND
ITS
DERIVATIVES
-
SYNTHESIS
AND
APPLICATIONS
81
AMER
AL-NAFIEY
6.1
INTRODUCTION
81
6.2
GRAPHITE
81
6.2.1
DEFINE
81
6.2.2
SYNTHETIC
GRAPHITE
82
6.2.3
CHARACTERIZED
AND
PROPERTIES
OF
GRAPHITE
82
6.2.3.1
STRUCTURE
82
6.2.4
APPLICATIONS
84
6.3
GRAPHENE
OXIDE
84
6.3.1
DEFINE
84
6.3.2
SYNTHETIC
OF
GRAPHENE
OXIDE
84
6.3.3
CHARACTERIZED
AND
PROPERTIES
OF
GRAPHENE
OXIDE
84
6.3.3.1
STRUCTURE
84
6.3.3.2
PROPERTIES
OF
GRAPHENE
OXIDE
87
6.3.3.3
APPLICATIONS
OF
GRAPHENE
OXIDE
88
6.3.3.4
FEW
EXAMPLES
88
6.4
REDUCED
GRAPHENE
OXIDE
89
6.4.1
DEFINE
89
6.4.2
SYNTHETIC
OF
REDUCED
GRAPHENE
OXIDE
OR
REDUCTION
OF
GRAPHENE
OXIDE
89
6.4.2.1
THERMAL
REDUCTION
OF
GO
90
6.4.2.2
PHOTOCATALYTIC
METHOD
94
6.4.2.3
ELECTROCHEMICAL
METHOD
95
6.4.2.4
OTHER
METHODS
95
6.4.3
CHARACTERIZED,
STRUCTURE,
AND
PROPERTIES
OF
REDUCED
GRAPHENE
OXIDE
95
6.4.3.1
STRUCTURE
96
6.4.3.2
PROPERTIES
AND
APPLICATIONS
OF
REDUCED
GRAPHENE
OXIDE
97
6.5
GRAPHENE
98
6.5.1
DEFINE
98
6.5.2
SYNTHESIS
OF
GRAPHENE
98
6.5.2.1
CHEMICAL
VAPOR
DEPOSITION
(CVD)
101
6.5.2.2
EPITAXIAL
GROWTH
102
6.5.2.3
MECHANICAL
EXFOLIATION
104
VIII
CONTENTS
6.5.2.4
CHEMICAL
REDUCTION
OF
GRAPHENE
OXIDE
(GO)
105
6.5.3
CHARACTERIZED,
STRUCTURE,
AND
PROPERTIES
OF
GRAPHENE
105
6.5.3.1
SURFACE
PROPERTIES
105
6.5.3.2
ELECTRONIC
PROPERTIES
105
6.5.3.3
OPTICAL
PROPERTIES
106
6.5.3.4
MECHANICAL
PROPERTIES
107
6.53.5
THERMAL
PROPERTIES
107
6.53.6
PHOTOCATALYTIC
PROPERTIES
108
6.53.7
MAGNETIC
PROPERTIES
109
6.533
CHARACTERIZATIONS
OF
GRAPHENE
109
6.53.9
MORPHOLOGY
(SEM,
TEM,
AND
AFM)
109
6.5.3.10
RAMAN
SPECTROSCOPY
111
6.5.3.11
X-RAY
PHOTOELECTRON
SPECTROSCOPY
(XPS)
111
6.5.3.12
UV-VISIBLE
SPECTROSCOPY
112
6.5.3.13
X-RAY
DIFFRACTION
(XRD)
114
6.5.3.14
THERMOGRAVIMETRIC
ANALYSIS
(TGA)
114
6.5.3.15
FTIR
SPECTROSCOPY
115
6.5.4
APPLICATION
OF
GRAPHENE
116
REFERENCES
116
7
RECENT
TRENDS
IN
GRAPHENE
-
LATEX
NANOCOMPOSITES
125
ANAND
KRISHNAMOORTHY
7.1
INTRODUCTION
125
7.2
POLYMER
LATTICES
-
AN
OVERVIEW
125
7.3
GRAPHENE
-
BACKGROUND
127
7.4
PREPARATION
AND
FUNCTIONALIZATION
OF
GRAPHENE
128
7.5
GRAPHENE
-
LATEX
NANOCOMPOSITES:
PREPARATION
PROPERTIES
AND
APPLICATIONS
129
7.6
CONCLUSIONS
137
REFERENCES
138
8
ADVANCED
CHARACTERIZATION
AND
TECHNIQUES
141
RAJA
MURUGESAN
8.1
INTRODUCTION
141
8.2
CHARACTERIZATION
TECHNIQUES
141
8.2.1
OPTICAL
TECHNIQUES
-
DYNAMIC
LIGHT
SCATTERING
(DLS)
141
8.2.2
OPTICAL
SPECTROSCOPY
144
8.2.3
NMR-NUCLEAR
MAGNETIC
RESONANCE
SPECTROSCOPY
145
8.2.4
INFRARED
SPECTROSCOPY
(IR)
AND
RAMAN
SPECTROSCOPY
145
8.2.5
X-RAY
PHOTOELECTRON
SPECTROSCOPY
(XPS)
146
8.2.6
CHARACTERIZATION
BASED
ON
INTERACTIONS
WITH
ELECTRONS
OR
ELECTRON
MICROSCOPY
(EM)
147
CONTENTS
I
IX
8.2.6.1
SCANNING
ELECTRON
MICROSCOPY
(SEM)
147
8.2.6.2
TRANSMISSION
ELECTRON
MICROSCOPY
(TEM)
149
8.2.6.3
SCANNING
TRANSMISSION
ELECTRON
MICROSCOPY
(STEM)
150
8.2.6.4
SCANNING
TUNNELING
MICROSCOPY
(STM)
151
8.2.7
ATOMIC
FORCE
MICROSCOPY
(AFM)
151
8.2.8
KELVIN
PROBE
FORCE
MICROSCOPY
(KPFM)
152
8.2.9
X-RAY-BASED
TECHNIQUES
152
REFERENCES
154
9
2D
NANOMATERIALS:
SUSTAINABLE
MATERIALS
FOR
CANCER
THERAPY
APPLICATIONS
157
MAMTA
CHAHAR
AND
SARITA
KHATURIA
9.1
INTRODUCTION
157
9.2
TYPES
OF
2D
NANOMATERIALS
158
9.3
METHODS
FOR
THE
SYNTHESIS
OF
2D
NANOMATERIALS
160
9.4
MECHANISM
OF
CANCER
THERANOSTICS
162
9.5
APPLICATIONS
OF
2D
NANOMATERIALS
163
9.6
CONCLUSION
163
REFERENCES
169
10
RECENT
ADVANCES
IN
FUNCTIONAL
2D
MATERIALS
FOR
FIELD
EFFECT
TRANSISTORS
AND
NONVOLATILE
RESISTIVE
MEMORIES
175
ADNAN
YOUNIS,
JAWAD
ALSAEI,
BASMA
AL-NAJAR,
HACENE
MANAA,
PRANAY
RAJAN,
EL
HADI
S.
SADKI,
AICHA
LOUCIF,
AND
SHAMA
SEHAR
10.1
INTRODUCTION
TO
2D
MATERIALS
175
10.2
ELECTRONIC
BAND
STRUCTURE
IN
2D
MATERIALS
176
10.3
ELECTRONIC
TRANSPORT
PROPERTIES
OF
2D
MATERIALS
178
10.4
TWO-DIMENSIONAL
MATERIALS
IN
FIELD
EFFECT
TRANSISTORS
180
10.4.1
FIELD
EFFECT
TRANSISTORS
180
10.4.2
THE
RISE
OF
2D
MATERIALS
RESEARCH
IN
FETS
180
10.4.3
GRAPHENE-BASED
FIELD
EFFECT
TRANSISTORS
181
10.4.4
2D
TRANSITION
METAL
DICHALCOGENIDES
(TMDCS)
IN
TRANSISTORS
183
10.5
TWO-DIMENSIONAL
MATERIALS
AS
NONVOLATILE
RESISTIVE
MEMORIES
184
10.5.1
NONVOLATILE
RESISTIVE
MEMORIES
BASED
ON
GRAPHENE
AND
ITS
DERIVATIVES
185
10.5.2
RESISTIVE
SWITCHING
MEMORIES
IN
2D
MATERIALS
BEYOND
GRAPHENE
187
10.5.2.1
SOLUTION-PROCESSED
MOS
2
-BASED
RESISTIVE
MEMORIES
187
10.5.2.2
SOLUTION-PROCESSED
BLACK
PHOSPHOROUS
NONVOLATILE
RESISTIVE
MEMORIES
188
10.5.2.3
EMERGING
NVM
BASED
ON
HEXAGONAL
BORON
NITRIDE
(H-BN)
188
10.6
CONCLUSIONS
AND
OUTLOOK
189
REFERENCES
190
CONTENTS
11
2D
ADVANCED
FUNCTIONAL
NANOMATERIALS
FOR
CANCER
THERAPY
199
RAJ
KUMAR,
NAVEEN
BUNEKAR,
SUNIL
DUTT,
PULIKANTI
G.
REDDY,
ABHISHEK
K.
GUPTA,
KESHAW
R.
AADIL,
VIVEK
K.
MISHRA,
SHIVENDRA
SINGH,
AND
CHANDRANI
SARKAR
11.1
11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.3
11.3.1
11.3.1.1
11.3.2
11.3.2.1
11.3.2.2
11.3.2.3
11.3.3
11.4
11.5
INTRODUCTION
199
2D
NANOMATERIALS
CLASSIFICATION
202
GRAPHENE
FAMILY
NANOMATERIALS
202
TRANSITION
METAL
DICHALCOGENIDES
(TMDS)
203
LAYERED
DOUBLE
HYDROXIDES
(LDHS)
205
CARBONITRIDES
(MXENES)
206
BLACK
PHOSPHORUS
(BP)
206
CANCER
THERAPY
208
MECHANISM
OF
ACTION
IN
CANCER
THERAPY
212
MODE
OF
ACTION
OF
2D
NANOMATERIALS
212
PHOTODYNAMIC
THERAPY
FOR
CANCER
CELL
TREATMENT
215
MECHANISM
OF
PHOTODYNAMIC
THERAPY
215
2D
NANOMATERIALS
AS
PHOTOSENSITIZER
FOR
PDT
217
APPLICATION
OF
2D
NANOMATERIALS
IN
PHOTODYNAMIC
THERAPY
21
7
2D
NANOMATERIALS-CANCER
DETECTION/DIAGNOSIS/THERAGNOSTIC
218
TISSUE
ENGINEERING
219
CONCLUSION
220
ACKNOWLEDGMENT
221
REFERENCES
221
12
SYNTHESIS
OF
NANOSTRUCTURED
MATERIALS
VIA
GREEN
AND
SOL-GEL
METHODS:
A
REVIEW
235
ANKIT
S.
BARTWAL,
RAHUL
THAKUR,
SUMIT
RINGWAL,
AND
SATISH
C.
SATI
12.1
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.3
.
12.4
INTRODUCTION
235
METHODS
USED
IN
NANOSTRUCTURED
SYNTHESIS
236
GREEN
METHOD
OF
NANOPARTICLES
SYNTHESIS
236
SOL-GEL
METHOD
OF
NANOPARTICLES
SYNTHESIS
236
GREEN
METHOD
OF
NANOCOMPOSITES
SYNTHESIS
241
SOL-GEL
METHOD
OF
NANOCOMPOSITES
241
DISCUSSION
241
CONCLUSION
244
REFERENCES
244
13
STUDY
OF
ANTIMICROBIAL
ACTIVITY
OF
ZNO
NANOPARTICLES
USING
LEAVES
EXTRACT
OF
FICUS
AURICULATA
BASED
ON
GREEN
CHEMISTRY
PRINCIPLES
249
GURPREET
KOUR,
ANKIT
S.
BARTWAL,
AND
SATISH
C.
SATI
13.1
13.2
13.2.1
INTRODUCTION
249
MATERIALS
AND
METHODS
250
CHEMICALS
250
CONTENTS
XI
13.2.2
13.2.3
13.3
13.3.1
METHODOLOGY
250
ANTIMICROBIAL
ACTIVITY
251
RESULTS
AND
DISCUSSION
251
CHARACTERIZATION
OF
SYNTHESIZED
ZINC-OXIDE
NANOPARTICLES
(ZNONPS)
251
13.3.1.1
13.3.1.2
13.3.1.3
13.3.1.4
13.3.2
13.4
XRD
ANALYSIS
251
FT-IR
ANALYSIS
252
SEM
ANALYSIS
254
TEM
ANALYSIS
254
ANTIBACTERIAL
ACTIVITY
254
CONCLUSION
255
ACKNOWLEDGMENTS
255
REFERENCES
255
14
PIEZOELECTRIC
PROPERTIES
OF
NA
1
_
X
K
X
NBO
3
NEARX
=
0.475,
MORPHOTROPIC
PHASE
REGION
257
SURENDRA
SINGH
AND
NARAYAN
S.
PANWAR
14.1
14.2
14.3
INTRODUCTION
257
EXPERIMENTAL
PROCEDURE
259
RESULTS
AND
DISCUSSION
260
REFERENCES
262
15
SYNTHESIS
AND
CHARACTERIZATION
OF
SDC
NANO-POWDER
FOR
IT-SOFC
APPLICATIONS
265
BHARATI
B.
PATIL
15.1
15.1.1
15.1.2
15.1.3
15.1.4
15.1.5
15.1.6
INTRODUCTION
265
SOLID
OXIDE
FUEL
CELLS
(SOFCS)
265
INTERMEDIATE
TEMPERATURE
SOLID
OXIDE
FUEL
CELLS
(IT-SOFCS)
266
WHY
SAMARIUM-DOPED
CERIA
(SDC)
MATERIAL?
266
VARIOUS
SYNTHESIS
METHODS
FOR
SDC
267
WHY
SDC
SYNTHESIS
BY
COMBUSTION
PROCESS?
268
WHY
SDC
SYNTHESIS
BY
GLYCINE
NITRATE
COMBUSTION
PROCESS
(GNP)?
268
15.1.7
APPLICATIONS
OF
SDC
MATERIAL
RELATED
TO
INTERMEDIATE
TEMPERATURE
SOLID
OXIDE
FUEL
CELLS
269
15.1.7.1
15.1.7.2
15.1.7.3
15.1.7.4
15.1.7.5
15.2
15.2.1
15.2.2
15.3
15.3.1
APPLICATIONS
OF
SDC
AS
SOFC
ELECTROLYTE
269
APPLICATIONS
OF
SDC
TO
MAKE
COMPOSITE
ANODE
269
APPLICATIONS
OF
SDC
TO
MAKE
COMPOSITE
CATHODE
270
APPLICATIONS
OF
SDC
AS
AN
INTERLAYER
270
APPLICATIONS
OF
SDC
AS
AN
ADDITIONAL
ANODE
LAYER
270
EXPERIMENTAL
270
POWDER
SYNTHESIS
270
POWDER
CHARACTERIZATION
271
RESULTS
AND
DISCUSSION
272
TG-DTG
STUDY
272
XII
CONTENTS
15.3.2
XRD
ANALYSIS
272
15.3.3
POWDER
MICROSTRUCTURE
276
15.3.3.1
SEM
ANALYSIS
276
15.3.3.2
TEM
ANALYSIS
277
15.3.3.3
ED
AX
ANALYSIS
277
15.3.3.4
BET
ANALYSIS
278
15.3.4
ELECTRICAL
PROPERTIES
278
15.4
CONCLUSIONS
281
ACKNOWLEDGMENTS
281
REFERENCES
282
16
INTRODUCTION
OF
2D
NANOMATERIALS
AND
THEIR
PHOTOCATALYTIC
APPLICATIONS
285
KALLAPPA
RAMCHANDRA
SANADI
16.1
INTRODUCTION
285
16.2
DEFINITIONS
OF
NANOMATERIALS
286
16.3
HISTORY
OF
NANOTECHNOLOGY
286
16.3.1
TOP-DOWN
APPROACH
286
16.3.2
BOTTOM-UP
APPROACH
286
16.4
CLASSIFICATION
OF
NANOMATERIALS
286
16.4.1
ZERO-DIMENSIONAL
(0-D)
287
16.4.2
ONE-DIMENSIONAL
(1-D)
287
16.4.3
THREE-DIMENSIONAL
(3-D)
287
16.4.4
TWO-DIMENSIONAL
(2-D)
287
16.4.4.1
SYNTHETIC
METHODS
288
16.5
CHARACTERIZATION
TECHNIQUES
FOR
2D
NANOMATERIALS
290
16.6
APPLICATIONS
OF
2D
NANOMATERIALS
291
16.7
PHOTOCATALYTIC
APPLICATION
291
16.7.1
WHY
PHOTOCATALYST?
291
16.7.2
BRIEF
HISTORY
OF
PHOTOCATALYSIS
292
16.7.3
PRINCIPLES
OF
HETEROGENEOUS
PHOTOCATALYSIS
292
16.7.4
PHOTOCATALYTIC
STUDY
OF
2D
NANOMATERIALS
293
16.7.5
CHALLENGES
BEHIND
2D
NANOMATERIALS
AS
A
PHOTOCATALYST
294
REFERENCES
294
17
GRAPHENE
AND
ITS
ANALOGOUS
2D-LAYERED
MATERIALS
FOR
FLEXIBLE
PERSISTENT
ENERGY
STORAGE
DEVICES
IN
CONSUMER
ELECTRONICS
297
HIMADRI
TANAYA
DAS,
K.
HARIPRASAD,
AND
T.
E.
BALAJI
17.1
INTRODUCTION
297
17.2
BRIEF
SKETCH
OF
THE
TYPES
OF
SC
AND
ITS
WORKING
MECHANISM
298
17.3
EVOLUTION
OF
ELECTRODE
MATERIALS
FOR
FLEXIBLE
SUPERCAPACITORS
300
17.4
DEVELOPING
GRAPHENE
ELECTRODES
WITH
DIFFERENT
NANOCOMPOSITES
304
17.4.1
OTHER
CARBON-BASED
NANOMATERIALS
WITH
GRAPHENE
304
17.4.2
USING
ORGANIC
COMPOSITES
WITH
GRAPHENE
306
CONTENTS
XIII
17.4.3
CONDUCTIVE
POLYMER
WITH
GRAPHENE
306
17.4.4
COMBINING
GRAPHENE
WITH
OTHER
METAL
OXIDES/HYDROXIDES
308
17.4.5
COMBINING
GRAPHENE
WITH
OTHER
2D-LAYERED
MATERIALS
308
17.5
NOVEL
TECHNOLOGIES
TO
DEVELOP
FLEXIBLE
GRAPHENE-BASED
SUPERCAPACITORS
310
17.6
CONCLUSION
311
17.7
FUTURE
ASPECTS
313
REFERENCES
313
18
2D
DICHALCOGENIDES
317
RAM
S.
SINGH,
VARUN
RAI,
AND
ARUN
K.
SINGH
18.1
INTRODUCTION
317
18.1.1
WHAT
ARE
2D
DICHALCOGENIDES?
317
18.1.2
PROPERTIES
318
18.2
METHODS
OF
SYNTHESIS
321
18.2.1
TOP-DOWN
METHOD
321
18.2.1.1
MICROMECHANICAL
EXFOLIATION
321
18.2.1.2
LIQUID
EXFOLIATION
322
18.2.1.3
CHEMICAL
INTERCALATION
AND
EXFOLIATION
322
18.2.1.4
ELECTROCHEMICAL
EXFOLIATION
322
18.2.1.5
THINNING
BY
THERMAL
ANNEALING,
LASER,
AND
CHEMICAL
ETCHING
323
18.2.2
BOTTOM-UP
METHOD
323
18.2.2.1
CHEMICAL
VAPOR
DEPOSITION
323
18.2.2.2
SOLVO-THERMAL
324
18.2.2.3
MOLECULAR
BEAM
EPITAXY
325
18.3
MODIFICATION
OF
PROPERTIES
325
18.4
APPLICATIONS
327
18.4.1
OPTOELECTRONICS
327
18.4.2
SENSORS
329
18.4.3
SPINTRONICS
329
18.4.4
PHOTOCATALYSIS
329
18.4.5
BIOMEDICAL
APPLICATIONS
330
18.5
CONCLUSION
330
ACKNOWLEDGMENT
330
REFERENCES
331
19
RECENT
TRENDS
ON
GRAPHENE-BASED
METAL
OXIDE
NANOCOMPOSITES
TOWARD
PHOTOELECTROCHEMICAL
WATER
SPLITTING
APPLICATION
335
KASHINATH
LELLALA
AND
MOUNI
ROY
19.1
INTRODUCTION
335
19.1.1
BASIC
OF
PHOTO-ANODE/CATHODE
335
19.1.2
PROPERTIES
OF
PEC
336
19.1.3
IMPORTANCE
OF
CATALYST/ELECTRODE
336
19.1.4
FUNDAMENTAL
CONCEPT
OF
PHOTO-ELECTROCHEMICAL
WATER
SPLITTING
337
XIV
CONTENTS
19.1.4.1
LIGHT-CATALYST
INTERACTION
337
19.1.4.2
ELECTRON-HOLE
PAIR
337
19.1.4.3
CARRIER
TRANSPORTATION-SEPARATION
338
19.1.4.4
WATER
SPLITTING
REACTION
339
19.1.4.5
NATURE
OF
ELECTROLYTE
339
19.1.4.6
CATALYSIS
339
19.1.4.7
CRYSTALLINITY
AND
SIZE
340
19.1.4.8
TEMPERATURE
AND
PRESSURE
340
19.1.4.9
HETEROGENEOUS
ELECTRON
TRANSFER
340
19.1.4.10
PH
DEPENDENCY
340
19.2
GRAPHENE
AND
GRAPHENE-BASED
NANOCOMPOSITES
340
19.2.1
GRAPHENE
340
19.2.2
GRAPHENE-BASED
NANOCOMPOSITES
341
19.3
SYNTHESIS
OF
GRAPHENE-BASED
METAL
OXIDE
NANOCOMPOSITES
342
19.4
APPLICATION
OF
GRAPHENE-METAL
OXIDE
COMPOSITES
TOWARD
PHOTOELECTROCHEMICAL
WATER
SPLITTING
345
19.5
SUMMARY
AND
FUTURE
PERSPECTIVE
349
REFERENCES
349
20
2D
MOFS
NANOSHEETS
357
AREZOU
MOHAMMADINEZHAD
20.1
INTRODUCTION
357
20.2
SYNTHETIC
STRATEGIES
357
20.2.1
TOP-DOWN
METHOD
358
20.2.1.1
SONICATION
EXFOLIATION
358
20.2.1.2
MECHANICAL
EXFOLIATION
METHOD
359
20.2.1.3
CHEMICAL
EXFOLIATION
359
20.2.1.4
LANGMUIR-BLODGETT
METHOD
359
20.2.1.5
SOLVENT-INDUCED
EXFOLIATION
359
20.2.2
BOTTOM-UP
METHOD
359
20.2.2.1
INTERFACIAL
SYNTHESIS
METHOD
360
20.2.2.2
SURFACTANT-ASSISTED
METHOD
360
20.2.2.3
TEMPLATE
METHOD
360
20.2.2.4
SONICATION
SYNTHESIS
METHOD
360
20.2.3
OTHER
SYNTHESIS
METHODS
361
20.3
APPLICATIONS
OF
2D
MOFS
NANOSHEETS
361
20.3.1
GAS
SEPARATION
361
20.3.2
ENERGY
CONVERSION
AND
STORAGE
361
20.3.3
CATALYSIS
362
20.3.4
SENSING
PLATFORMS
362
20.3.5
BIOMEDICINE
362
20.4
COMPOSITES
OF
2D
MOF
NANOSHEETS
362
20.5
CONCLUSION
363
REFERENCES
363
CONTENTS
XX
21
INTRODUCTION
AND
APPLICATIONS
OF
2D
NANOMATERIALS
369
ATTA
U.
REHMAN,
FATIMA
AFZAL,
MUHAMMAD
T.
ANSAR,
AMNA
SAJJAD,
AND
MUHAMMAD
A.
MUNIR
21.1
INTRODUCTION
369
21.2
APPLICATIONS
OF
2D
NANOMATERIALS
371
21.2.1
PHOTODETECTORS
371
21.2.2
PHOTOTRANSISTORS
371
21.2.3
P-N
JUNCTION
PHOTODETECTORS
372
21.2.4
FIELD-EFFECT
TRANSISTORS
373
21.2.5
GAS
SENSORS
373
21.2.6
LITHIUM-ION
BATTERIES
374
21.2.7
LITHIUM-ION
BATTERY
ANODES
374
21.2.8
LITHIUM-ION
BATTERY
CATHODES
375
21.2.9
GRAPHENE
AS
CURRENT
COLLECTOR
376
21.2.10
GRAPHENE
IN
SUPERCAPACITORS
376
21.2.11
GRAPHENE
NANOCOMPOSITES
WITH
DISTINCT
MATERIALS
377
21.2.12
DOPING
AND
SURFACE
MODIFICATIONS
378
21.2.13
GRAPHENE
FOR
GAS
SENSORS
379
21.3
CONCLUSION
379
REFERENCES
380
22
2D
NANOMATERIALS
FOR
PHOTOCATALYSIS
AND
PHOTOELECTROCATALYSIS
383
GUBBALA
V.
RAMESH,
N.
MAHENDAR
REDDY,
MUWA
D.
PRASAD,
D.
SARITHA,
AND
KOLA
RAMESH
22.1
INTRODUCTION
383
22.2
PHOTOCATALYTIC
CO
2
REDUCTION
385
22.3
PHOTOELECTROCATALYTIC
CO
2
REDUCTION
388
22.4
PHOTOCATALYTIC
HYDROGEN
PRODUCTION
391
22.5
PHOTOELECTROCATALYTIC
HYDROGEN
PRODUCTION
395
22.6
PHOTOCATALYTIC
DYE
DEGRADATION
397
22.7
CONCLUSION
401
REFERENCES
402
INDEX
413
|
adam_txt |
CONTENTS
FOREWORD
XVII
PREFACE
XA
1
GRAPHENE
CHEMICAL
DERIVATIVES
SYNTHESIS
AND
APPLICATIONS:
STATE-OF-THE-ART
AND
PERSPECTIVES
1
MAXIM
K.
RABCHINSKII,
MAKSIM
V.
GUDKOV,
AND
DINA
YU.
STOLYAROVA
1.1
1.2
1.3
1.4
1.5
INTRODUCTION
1
GRAPHENE
OXIDE:
SYNTHESIS
METHODS
AND
CHEMISTRY
ALTERATION
3
GRAPHENE
OXIDE
REDUCTION
AND
FUNCTIONALIZATION
6
APPLICATIONS
OF
CMGS
13
CONCLUDING
REMARKS
15
ACKNOWLEDGMENTS
15
REFERENCES
16
2
2D/2D
GRAPHENE
OXIDE-LAYERED
DOUBLE
HYDROXIDE
NANOCOMPOSITE
FOR
THE
IMMOBILIZATION
OF
DIFFERENT
RADIONUCLIDES
21
PAULMANICKAM
KOILRAJ
AND
KEIKO
SASAKI
2.1
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3
2.4
INTRODUCTION
21
SYNTHESIS
OF
GO/LDH
COMPOSITE
22
CO-PRECIPITATION
22
HYDROTHERMAL
PREPARATION
23
SELF-ASSEMBLY
OF
LDH
NANOSHEETS
WITH
GO
NANOSHEETS
24
REMOVAL
OF
RADIONUCLIDES
24
U(VI)
REMOVAL
24
SORPTION
OF
EU(III)
WITH
THE
PRESENCE
OF
GO
ON
LDH
25
CO-REMEDIATION
ANIONIC
SEO
4
2
AND
CATIONIC
SR
2+
26
CONCLUSION
29
REFERENCES
29
VI
CONTENTS
3
2D
NANOMATERIALS
FOR
BIOMEDICAL
APPLICATIONS
31
POLIRAJU
KALLURU
AND
RAVIRAJ
VANKAYALA
3.1
INTRODUCTION
31
3.1.1
PHOTOTHERMAL
AND
PHOTODYNAMIC
THERAPY
31
3.1.2
BIOIMAGING
AND
DRUG/GENE
DELIVERY
34
3.1.3
BIOSENSORS
37
3.1.4
ANTIBACTERIAL
ACTIVITY
39
3.1.5
TISSUE
ENGINEERING
AND
REGENERATIVE
MEDICINE
41
3.2
CONCLUSIONS
43
REFERENCES
43
4
NOVEL
TWO-DIMENSIONAL
NANOMATERIALS
FOR
NEXT-GENERATION
PHOTODETECTORS
47
KHURELBAATAR
ZAGARZUSEM
AND
ZUMUUKHOROL
MUNKHSAIKHAN
4.1
INTRODUCTION
47
4.2
2D
MATERIALS
FOR
PDS
49
4.2.1
GRAPHENE
49
4.2.2
TMDS
(TRANSITION
METAL
DICHALCOGENIDES)
49
4.2.3
MXENES
(2D
TRANSITION
METAL
CARBIDES/NITRIDES)
50
4.2.4
XENES
(MONOELEMENTAL
2D
MATERIALS)
50
4.3
THE
PHYSICAL
MECHANISM
ENABLING
PHOTODETECTION
50
4.4
CHARACTERIZATION
PARAMETERS
FOR
PHOTODETECTORS
51
4.4.1
RESPONSIVITY
51
4.4.2
DETECTIVITY
52
4.4.3
EXTERNAL
QUANTUM
EFFICIENCY
52
4.4.4
GAIN
52
4.4.5
RESPONSE
TIME
52
4.4.6
NOISE
EQUIVALENT
POWER
52
4.5
SYNTHESIS
METHODS
FOR
2D
MATERIALS
53
4.5.1
MECHANICAL
EXFOLIATION
53
4.5.2
LIQUID EXFOLIATION
53
4.5.3
CHEMICAL
VAPOR
DEPOSITION
(CVD)
53
4.6
PHOTODETECTORS
BASED
ON
2D
MATERIALS
55
4.6.1
PHOTODETECTORS
BASED
ON
GRAPHENE
55
4.6.2
PHOTODETECTORS
BASED
ON
MOS
2
55
4.6.3
PHOTODETECTORS
BASED
ON
BP
55
4.7
PHOTODETECTORS
BASED
ON
2D
HETEROSTRUCTURES
56
4.8
CONCLUSIONS
AND
OUTLOOK
58
REFERENCES
58
5
2D
NANOMATERIALS
FOR
CANCER
THERAPY
63
NARESH
KUTHALA
5.1
INTRODUCTION
63
5.2
2D
NANOMATERIALS
FOR
CANCER
THERAPY
64
5.2.1
2D
NANOMATERIALS
FOR
COMBINATION
PTT
WITH
PDT
64
CONTENTS
VII
5.2.2
2D-NANOMATERIALS
FOR
COMBINATION
PTT
THERAPY
WITH
RADIOTHERAPY
(RT)
68
5.2.3
2D
NANOMATERIALS
FOR
COMBINATION
PTT
THERAPY
WITH
SONODYNAMIC
THERAPY
(SDT)
70
5.2.4
2D
NANOMATERIALS
FOR
COMBINATION
PTT
THERAPY
WITH
IMMUNE
THERAPY
(IMT)
73
5.3
SUMMARY
AND
FUTURE
PERSPECTIVES
76
REFERENCES
76
6
GRAPHENE
AND
ITS
DERIVATIVES
-
SYNTHESIS
AND
APPLICATIONS
81
AMER
AL-NAFIEY
6.1
INTRODUCTION
81
6.2
GRAPHITE
81
6.2.1
DEFINE
81
6.2.2
SYNTHETIC
GRAPHITE
82
6.2.3
CHARACTERIZED
AND
PROPERTIES
OF
GRAPHITE
82
6.2.3.1
STRUCTURE
82
6.2.4
APPLICATIONS
84
6.3
GRAPHENE
OXIDE
84
6.3.1
DEFINE
84
6.3.2
SYNTHETIC
OF
GRAPHENE
OXIDE
84
6.3.3
CHARACTERIZED
AND
PROPERTIES
OF
GRAPHENE
OXIDE
84
6.3.3.1
STRUCTURE
84
6.3.3.2
PROPERTIES
OF
GRAPHENE
OXIDE
87
6.3.3.3
APPLICATIONS
OF
GRAPHENE
OXIDE
88
6.3.3.4
FEW
EXAMPLES
88
6.4
REDUCED
GRAPHENE
OXIDE
89
6.4.1
DEFINE
89
6.4.2
SYNTHETIC
OF
REDUCED
GRAPHENE
OXIDE
OR
REDUCTION
OF
GRAPHENE
OXIDE
89
6.4.2.1
THERMAL
REDUCTION
OF
GO
90
6.4.2.2
PHOTOCATALYTIC
METHOD
94
6.4.2.3
ELECTROCHEMICAL
METHOD
95
6.4.2.4
OTHER
METHODS
95
6.4.3
CHARACTERIZED,
STRUCTURE,
AND
PROPERTIES
OF
REDUCED
GRAPHENE
OXIDE
95
6.4.3.1
STRUCTURE
96
6.4.3.2
PROPERTIES
AND
APPLICATIONS
OF
REDUCED
GRAPHENE
OXIDE
97
6.5
GRAPHENE
98
6.5.1
DEFINE
98
6.5.2
SYNTHESIS
OF
GRAPHENE
98
6.5.2.1
CHEMICAL
VAPOR
DEPOSITION
(CVD)
101
6.5.2.2
EPITAXIAL
GROWTH
102
6.5.2.3
MECHANICAL
EXFOLIATION
104
VIII
CONTENTS
6.5.2.4
CHEMICAL
REDUCTION
OF
GRAPHENE
OXIDE
(GO)
105
6.5.3
CHARACTERIZED,
STRUCTURE,
AND
PROPERTIES
OF
GRAPHENE
105
6.5.3.1
SURFACE
PROPERTIES
105
6.5.3.2
ELECTRONIC
PROPERTIES
105
6.5.3.3
OPTICAL
PROPERTIES
106
6.5.3.4
MECHANICAL
PROPERTIES
107
6.53.5
THERMAL
PROPERTIES
107
6.53.6
PHOTOCATALYTIC
PROPERTIES
108
6.53.7
MAGNETIC
PROPERTIES
109
6.533
CHARACTERIZATIONS
OF
GRAPHENE
109
6.53.9
MORPHOLOGY
(SEM,
TEM,
AND
AFM)
109
6.5.3.10
RAMAN
SPECTROSCOPY
111
6.5.3.11
X-RAY
PHOTOELECTRON
SPECTROSCOPY
(XPS)
111
6.5.3.12
UV-VISIBLE
SPECTROSCOPY
112
6.5.3.13
X-RAY
DIFFRACTION
(XRD)
114
6.5.3.14
THERMOGRAVIMETRIC
ANALYSIS
(TGA)
114
6.5.3.15
FTIR
SPECTROSCOPY
115
6.5.4
APPLICATION
OF
GRAPHENE
116
REFERENCES
116
7
RECENT
TRENDS
IN
GRAPHENE
-
LATEX
NANOCOMPOSITES
125
ANAND
KRISHNAMOORTHY
7.1
INTRODUCTION
125
7.2
POLYMER
LATTICES
-
AN
OVERVIEW
125
7.3
GRAPHENE
-
BACKGROUND
127
7.4
PREPARATION
AND
FUNCTIONALIZATION
OF
GRAPHENE
128
7.5
GRAPHENE
-
LATEX
NANOCOMPOSITES:
PREPARATION
PROPERTIES
AND
APPLICATIONS
129
7.6
CONCLUSIONS
137
REFERENCES
138
8
ADVANCED
CHARACTERIZATION
AND
TECHNIQUES
141
RAJA
MURUGESAN
8.1
INTRODUCTION
141
8.2
CHARACTERIZATION
TECHNIQUES
141
8.2.1
OPTICAL
TECHNIQUES
-
DYNAMIC
LIGHT
SCATTERING
(DLS)
141
8.2.2
OPTICAL
SPECTROSCOPY
144
8.2.3
NMR-NUCLEAR
MAGNETIC
RESONANCE
SPECTROSCOPY
145
8.2.4
INFRARED
SPECTROSCOPY
(IR)
AND
RAMAN
SPECTROSCOPY
145
8.2.5
X-RAY
PHOTOELECTRON
SPECTROSCOPY
(XPS)
146
8.2.6
CHARACTERIZATION
BASED
ON
INTERACTIONS
WITH
ELECTRONS
OR
ELECTRON
MICROSCOPY
(EM)
147
CONTENTS
I
IX
8.2.6.1
SCANNING
ELECTRON
MICROSCOPY
(SEM)
147
8.2.6.2
TRANSMISSION
ELECTRON
MICROSCOPY
(TEM)
149
8.2.6.3
SCANNING
TRANSMISSION
ELECTRON
MICROSCOPY
(STEM)
150
8.2.6.4
SCANNING
TUNNELING
MICROSCOPY
(STM)
151
8.2.7
ATOMIC
FORCE
MICROSCOPY
(AFM)
151
8.2.8
KELVIN
PROBE
FORCE
MICROSCOPY
(KPFM)
152
8.2.9
X-RAY-BASED
TECHNIQUES
152
REFERENCES
154
9
2D
NANOMATERIALS:
SUSTAINABLE
MATERIALS
FOR
CANCER
THERAPY
APPLICATIONS
157
MAMTA
CHAHAR
AND
SARITA
KHATURIA
9.1
INTRODUCTION
157
9.2
TYPES
OF
2D
NANOMATERIALS
158
9.3
METHODS
FOR
THE
SYNTHESIS
OF
2D
NANOMATERIALS
160
9.4
MECHANISM
OF
CANCER
THERANOSTICS
162
9.5
APPLICATIONS
OF
2D
NANOMATERIALS
163
9.6
CONCLUSION
163
REFERENCES
169
10
RECENT
ADVANCES
IN
FUNCTIONAL
2D
MATERIALS
FOR
FIELD
EFFECT
TRANSISTORS
AND
NONVOLATILE
RESISTIVE
MEMORIES
175
ADNAN
YOUNIS,
JAWAD
ALSAEI,
BASMA
AL-NAJAR,
HACENE
MANAA,
PRANAY
RAJAN,
EL
HADI
S.
SADKI,
AICHA
LOUCIF,
AND
SHAMA
SEHAR
10.1
INTRODUCTION
TO
2D
MATERIALS
175
10.2
ELECTRONIC
BAND
STRUCTURE
IN
2D
MATERIALS
176
10.3
ELECTRONIC
TRANSPORT
PROPERTIES
OF
2D
MATERIALS
178
10.4
TWO-DIMENSIONAL
MATERIALS
IN
FIELD
EFFECT
TRANSISTORS
180
10.4.1
FIELD
EFFECT
TRANSISTORS
180
10.4.2
THE
RISE
OF
2D
MATERIALS
RESEARCH
IN
FETS
180
10.4.3
GRAPHENE-BASED
FIELD
EFFECT
TRANSISTORS
181
10.4.4
2D
TRANSITION
METAL
DICHALCOGENIDES
(TMDCS)
IN
TRANSISTORS
183
10.5
TWO-DIMENSIONAL
MATERIALS
AS
NONVOLATILE
RESISTIVE
MEMORIES
184
10.5.1
NONVOLATILE
RESISTIVE
MEMORIES
BASED
ON
GRAPHENE
AND
ITS
DERIVATIVES
185
10.5.2
RESISTIVE
SWITCHING
MEMORIES
IN
2D
MATERIALS
"
BEYOND
"
GRAPHENE
187
10.5.2.1
SOLUTION-PROCESSED
MOS
2
-BASED
RESISTIVE
MEMORIES
187
10.5.2.2
SOLUTION-PROCESSED
BLACK
PHOSPHOROUS
NONVOLATILE
RESISTIVE
MEMORIES
188
10.5.2.3
EMERGING
NVM
BASED
ON
HEXAGONAL
BORON
NITRIDE
(H-BN)
188
10.6
CONCLUSIONS
AND
OUTLOOK
189
REFERENCES
190
CONTENTS
11
2D
ADVANCED
FUNCTIONAL
NANOMATERIALS
FOR
CANCER
THERAPY
199
RAJ
KUMAR,
NAVEEN
BUNEKAR,
SUNIL
DUTT,
PULIKANTI
G.
REDDY,
ABHISHEK
K.
GUPTA,
KESHAW
R.
AADIL,
VIVEK
K.
MISHRA,
SHIVENDRA
SINGH,
AND
CHANDRANI
SARKAR
11.1
11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.2.5
11.3
11.3.1
11.3.1.1
11.3.2
11.3.2.1
11.3.2.2
11.3.2.3
11.3.3
11.4
11.5
INTRODUCTION
199
2D
NANOMATERIALS
CLASSIFICATION
202
GRAPHENE
FAMILY
NANOMATERIALS
202
TRANSITION
METAL
DICHALCOGENIDES
(TMDS)
203
LAYERED
DOUBLE
HYDROXIDES
(LDHS)
205
CARBONITRIDES
(MXENES)
206
BLACK
PHOSPHORUS
(BP)
206
CANCER
THERAPY
208
MECHANISM
OF
ACTION
IN
CANCER
THERAPY
212
MODE
OF
ACTION
OF
2D
NANOMATERIALS
212
PHOTODYNAMIC
THERAPY
FOR
CANCER
CELL
TREATMENT
215
MECHANISM
OF
PHOTODYNAMIC
THERAPY
215
2D
NANOMATERIALS
AS
PHOTOSENSITIZER
FOR
PDT
217
APPLICATION
OF
2D
NANOMATERIALS
IN
PHOTODYNAMIC
THERAPY
21
7
2D
NANOMATERIALS-CANCER
DETECTION/DIAGNOSIS/THERAGNOSTIC
218
TISSUE
ENGINEERING
219
CONCLUSION
220
ACKNOWLEDGMENT
221
REFERENCES
221
12
SYNTHESIS
OF
NANOSTRUCTURED
MATERIALS
VIA
GREEN
AND
SOL-GEL
METHODS:
A
REVIEW
235
ANKIT
S.
BARTWAL,
RAHUL
THAKUR,
SUMIT
RINGWAL,
AND
SATISH
C.
SATI
12.1
12.2
12.2.1
12.2.2
12.2.3
12.2.4
12.3
.
12.4
INTRODUCTION
235
METHODS
USED
IN
NANOSTRUCTURED
SYNTHESIS
236
GREEN
METHOD
OF
NANOPARTICLES
SYNTHESIS
236
SOL-GEL
METHOD
OF
NANOPARTICLES
SYNTHESIS
236
GREEN
METHOD
OF
NANOCOMPOSITES
SYNTHESIS
241
SOL-GEL
METHOD
OF
NANOCOMPOSITES
241
DISCUSSION
241
CONCLUSION
244
REFERENCES
244
13
STUDY
OF
ANTIMICROBIAL
ACTIVITY
OF
ZNO
NANOPARTICLES
USING
LEAVES
EXTRACT
OF
FICUS
AURICULATA
BASED
ON
GREEN
CHEMISTRY
PRINCIPLES
249
GURPREET
KOUR,
ANKIT
S.
BARTWAL,
AND
SATISH
C.
SATI
13.1
13.2
13.2.1
INTRODUCTION
249
MATERIALS
AND
METHODS
250
CHEMICALS
250
CONTENTS
XI
13.2.2
13.2.3
13.3
13.3.1
METHODOLOGY
250
ANTIMICROBIAL
ACTIVITY
251
RESULTS
AND
DISCUSSION
251
CHARACTERIZATION
OF
SYNTHESIZED
ZINC-OXIDE
NANOPARTICLES
(ZNONPS)
251
13.3.1.1
13.3.1.2
13.3.1.3
13.3.1.4
13.3.2
13.4
XRD
ANALYSIS
251
FT-IR
ANALYSIS
252
SEM
ANALYSIS
254
TEM
ANALYSIS
254
ANTIBACTERIAL
ACTIVITY
254
CONCLUSION
255
ACKNOWLEDGMENTS
255
REFERENCES
255
14
PIEZOELECTRIC
PROPERTIES
OF
NA
1
_
X
K
X
NBO
3
NEARX
=
0.475,
MORPHOTROPIC
PHASE
REGION
257
SURENDRA
SINGH
AND
NARAYAN
S.
PANWAR
14.1
14.2
14.3
INTRODUCTION
257
EXPERIMENTAL
PROCEDURE
259
RESULTS
AND
DISCUSSION
260
REFERENCES
262
15
SYNTHESIS
AND
CHARACTERIZATION
OF
SDC
NANO-POWDER
FOR
IT-SOFC
APPLICATIONS
265
BHARATI
B.
PATIL
15.1
15.1.1
15.1.2
15.1.3
15.1.4
15.1.5
15.1.6
INTRODUCTION
265
SOLID
OXIDE
FUEL
CELLS
(SOFCS)
265
INTERMEDIATE
TEMPERATURE
SOLID
OXIDE
FUEL
CELLS
(IT-SOFCS)
266
WHY
SAMARIUM-DOPED
CERIA
(SDC)
MATERIAL?
266
VARIOUS
SYNTHESIS
METHODS
FOR
SDC
267
WHY
SDC
SYNTHESIS
BY
COMBUSTION
PROCESS?
268
WHY
SDC
SYNTHESIS
BY
GLYCINE
NITRATE
COMBUSTION
PROCESS
(GNP)?
268
15.1.7
APPLICATIONS
OF
SDC
MATERIAL
RELATED
TO
INTERMEDIATE
TEMPERATURE
SOLID
OXIDE
FUEL
CELLS
269
15.1.7.1
15.1.7.2
15.1.7.3
15.1.7.4
15.1.7.5
15.2
15.2.1
15.2.2
15.3
15.3.1
APPLICATIONS
OF
SDC
AS
SOFC
ELECTROLYTE
269
APPLICATIONS
OF
SDC
TO
MAKE
COMPOSITE
ANODE
269
APPLICATIONS
OF
SDC
TO
MAKE
COMPOSITE
CATHODE
270
APPLICATIONS
OF
SDC
AS
AN
INTERLAYER
270
APPLICATIONS
OF
SDC
AS
AN
ADDITIONAL
ANODE
LAYER
270
EXPERIMENTAL
270
POWDER
SYNTHESIS
270
POWDER
CHARACTERIZATION
271
RESULTS
AND
DISCUSSION
272
TG-DTG
STUDY
272
XII
CONTENTS
15.3.2
XRD
ANALYSIS
272
15.3.3
POWDER
MICROSTRUCTURE
276
15.3.3.1
SEM
ANALYSIS
276
15.3.3.2
TEM
ANALYSIS
277
15.3.3.3
ED
AX
ANALYSIS
277
15.3.3.4
BET
ANALYSIS
278
15.3.4
ELECTRICAL
PROPERTIES
278
15.4
CONCLUSIONS
281
ACKNOWLEDGMENTS
281
REFERENCES
282
16
INTRODUCTION
OF
2D
NANOMATERIALS
AND
THEIR
PHOTOCATALYTIC
APPLICATIONS
285
KALLAPPA
RAMCHANDRA
SANADI
16.1
INTRODUCTION
285
16.2
DEFINITIONS
OF
NANOMATERIALS
286
16.3
HISTORY
OF
NANOTECHNOLOGY
286
16.3.1
TOP-DOWN
APPROACH
286
16.3.2
BOTTOM-UP
APPROACH
286
16.4
CLASSIFICATION
OF
NANOMATERIALS
286
16.4.1
ZERO-DIMENSIONAL
(0-D)
287
16.4.2
ONE-DIMENSIONAL
(1-D)
287
16.4.3
THREE-DIMENSIONAL
(3-D)
287
16.4.4
TWO-DIMENSIONAL
(2-D)
287
16.4.4.1
SYNTHETIC
METHODS
288
16.5
CHARACTERIZATION
TECHNIQUES
FOR
2D
NANOMATERIALS
290
16.6
APPLICATIONS
OF
2D
NANOMATERIALS
291
16.7
PHOTOCATALYTIC
APPLICATION
291
16.7.1
WHY
PHOTOCATALYST?
291
16.7.2
BRIEF
HISTORY
OF
PHOTOCATALYSIS
292
16.7.3
PRINCIPLES
OF
HETEROGENEOUS
PHOTOCATALYSIS
292
16.7.4
PHOTOCATALYTIC
STUDY
OF
2D
NANOMATERIALS
293
16.7.5
CHALLENGES
BEHIND
2D
NANOMATERIALS
AS
A
PHOTOCATALYST
294
REFERENCES
294
17
GRAPHENE
AND
ITS
ANALOGOUS
2D-LAYERED
MATERIALS
FOR
FLEXIBLE
PERSISTENT
ENERGY
STORAGE
DEVICES
IN
CONSUMER
ELECTRONICS
297
HIMADRI
TANAYA
DAS,
K.
HARIPRASAD,
AND
T.
E.
BALAJI
17.1
INTRODUCTION
297
17.2
BRIEF
SKETCH
OF
THE
TYPES
OF
SC
AND
ITS
WORKING
MECHANISM
298
17.3
EVOLUTION
OF
ELECTRODE
MATERIALS
FOR
FLEXIBLE
SUPERCAPACITORS
300
17.4
DEVELOPING
GRAPHENE
ELECTRODES
WITH
DIFFERENT
NANOCOMPOSITES
304
17.4.1
OTHER
CARBON-BASED
NANOMATERIALS
WITH
GRAPHENE
304
17.4.2
USING
ORGANIC
COMPOSITES
WITH
GRAPHENE
306
CONTENTS
XIII
17.4.3
CONDUCTIVE
POLYMER
WITH
GRAPHENE
306
17.4.4
COMBINING
GRAPHENE
WITH
OTHER
METAL
OXIDES/HYDROXIDES
308
17.4.5
COMBINING
GRAPHENE
WITH
OTHER
2D-LAYERED
MATERIALS
308
17.5
NOVEL
TECHNOLOGIES
TO
DEVELOP
FLEXIBLE
GRAPHENE-BASED
SUPERCAPACITORS
310
17.6
CONCLUSION
311
17.7
FUTURE
ASPECTS
313
REFERENCES
313
18
2D
DICHALCOGENIDES
317
RAM
S.
SINGH,
VARUN
RAI,
AND
ARUN
K.
SINGH
18.1
INTRODUCTION
317
18.1.1
WHAT
ARE
2D
DICHALCOGENIDES?
317
18.1.2
PROPERTIES
318
18.2
METHODS
OF
SYNTHESIS
321
18.2.1
TOP-DOWN
METHOD
321
18.2.1.1
MICROMECHANICAL
EXFOLIATION
321
18.2.1.2
LIQUID
EXFOLIATION
322
18.2.1.3
CHEMICAL
INTERCALATION
AND
EXFOLIATION
322
18.2.1.4
ELECTROCHEMICAL
EXFOLIATION
322
18.2.1.5
THINNING
BY
THERMAL
ANNEALING,
LASER,
AND
CHEMICAL
ETCHING
323
18.2.2
BOTTOM-UP
METHOD
323
18.2.2.1
CHEMICAL
VAPOR
DEPOSITION
323
18.2.2.2
SOLVO-THERMAL
324
18.2.2.3
MOLECULAR
BEAM
EPITAXY
325
18.3
MODIFICATION
OF
PROPERTIES
325
18.4
APPLICATIONS
327
18.4.1
OPTOELECTRONICS
327
18.4.2
SENSORS
329
18.4.3
SPINTRONICS
329
18.4.4
PHOTOCATALYSIS
329
18.4.5
BIOMEDICAL
APPLICATIONS
330
18.5
CONCLUSION
330
ACKNOWLEDGMENT
330
REFERENCES
331
19
RECENT
TRENDS
ON
GRAPHENE-BASED
METAL
OXIDE
NANOCOMPOSITES
TOWARD
PHOTOELECTROCHEMICAL
WATER
SPLITTING
APPLICATION
335
KASHINATH
LELLALA
AND
MOUNI
ROY
19.1
INTRODUCTION
335
19.1.1
BASIC
OF
PHOTO-ANODE/CATHODE
335
19.1.2
PROPERTIES
OF
PEC
336
19.1.3
IMPORTANCE
OF
CATALYST/ELECTRODE
336
19.1.4
FUNDAMENTAL
CONCEPT
OF
PHOTO-ELECTROCHEMICAL
WATER
SPLITTING
337
XIV
CONTENTS
19.1.4.1
LIGHT-CATALYST
INTERACTION
337
19.1.4.2
ELECTRON-HOLE
PAIR
337
19.1.4.3
CARRIER
TRANSPORTATION-SEPARATION
338
19.1.4.4
WATER
SPLITTING
REACTION
339
19.1.4.5
NATURE
OF
ELECTROLYTE
339
19.1.4.6
CATALYSIS
339
19.1.4.7
CRYSTALLINITY
AND
SIZE
340
19.1.4.8
TEMPERATURE
AND
PRESSURE
340
19.1.4.9
HETEROGENEOUS
ELECTRON
TRANSFER
340
19.1.4.10
PH
DEPENDENCY
340
19.2
GRAPHENE
AND
GRAPHENE-BASED
NANOCOMPOSITES
340
19.2.1
GRAPHENE
340
19.2.2
GRAPHENE-BASED
NANOCOMPOSITES
341
19.3
SYNTHESIS
OF
GRAPHENE-BASED
METAL
OXIDE
NANOCOMPOSITES
342
19.4
APPLICATION
OF
GRAPHENE-METAL
OXIDE
COMPOSITES
TOWARD
PHOTOELECTROCHEMICAL
WATER
SPLITTING
345
19.5
SUMMARY
AND
FUTURE
PERSPECTIVE
349
REFERENCES
349
20
2D
MOFS
NANOSHEETS
357
AREZOU
MOHAMMADINEZHAD
20.1
INTRODUCTION
357
20.2
SYNTHETIC
STRATEGIES
357
20.2.1
TOP-DOWN
METHOD
358
20.2.1.1
SONICATION
EXFOLIATION
358
20.2.1.2
MECHANICAL
EXFOLIATION
METHOD
359
20.2.1.3
CHEMICAL
EXFOLIATION
359
20.2.1.4
LANGMUIR-BLODGETT
METHOD
359
20.2.1.5
SOLVENT-INDUCED
EXFOLIATION
359
20.2.2
BOTTOM-UP
METHOD
359
20.2.2.1
INTERFACIAL
SYNTHESIS
METHOD
360
20.2.2.2
SURFACTANT-ASSISTED
METHOD
360
20.2.2.3
TEMPLATE
METHOD
360
20.2.2.4
SONICATION
SYNTHESIS
METHOD
360
20.2.3
OTHER
SYNTHESIS
METHODS
361
20.3
APPLICATIONS
OF
2D
MOFS
NANOSHEETS
361
20.3.1
GAS
SEPARATION
361
20.3.2
ENERGY
CONVERSION
AND
STORAGE
361
20.3.3
CATALYSIS
362
20.3.4
SENSING
PLATFORMS
362
20.3.5
BIOMEDICINE
362
20.4
COMPOSITES
OF
2D
MOF
NANOSHEETS
362
20.5
CONCLUSION
363
REFERENCES
363
CONTENTS
XX
21
INTRODUCTION
AND
APPLICATIONS
OF
2D
NANOMATERIALS
369
ATTA
U.
REHMAN,
FATIMA
AFZAL,
MUHAMMAD
T.
ANSAR,
AMNA
SAJJAD,
AND
MUHAMMAD
A.
MUNIR
21.1
INTRODUCTION
369
21.2
APPLICATIONS
OF
2D
NANOMATERIALS
371
21.2.1
PHOTODETECTORS
371
21.2.2
PHOTOTRANSISTORS
371
21.2.3
P-N
JUNCTION
PHOTODETECTORS
372
21.2.4
FIELD-EFFECT
TRANSISTORS
373
21.2.5
GAS
SENSORS
373
21.2.6
LITHIUM-ION
BATTERIES
374
21.2.7
LITHIUM-ION
BATTERY
ANODES
374
21.2.8
LITHIUM-ION
BATTERY
CATHODES
375
21.2.9
GRAPHENE
AS
CURRENT
COLLECTOR
376
21.2.10
GRAPHENE
IN
SUPERCAPACITORS
376
21.2.11
GRAPHENE
NANOCOMPOSITES
WITH
DISTINCT
MATERIALS
377
21.2.12
DOPING
AND
SURFACE
MODIFICATIONS
378
21.2.13
GRAPHENE
FOR
GAS
SENSORS
379
21.3
CONCLUSION
379
REFERENCES
380
22
2D
NANOMATERIALS
FOR
PHOTOCATALYSIS
AND
PHOTOELECTROCATALYSIS
383
GUBBALA
V.
RAMESH,
N.
MAHENDAR
REDDY,
MUWA
D.
PRASAD,
D.
SARITHA,
AND
KOLA
RAMESH
22.1
INTRODUCTION
383
22.2
PHOTOCATALYTIC
CO
2
REDUCTION
385
22.3
PHOTOELECTROCATALYTIC
CO
2
REDUCTION
388
22.4
PHOTOCATALYTIC
HYDROGEN
PRODUCTION
391
22.5
PHOTOELECTROCATALYTIC
HYDROGEN
PRODUCTION
395
22.6
PHOTOCATALYTIC
DYE
DEGRADATION
397
22.7
CONCLUSION
401
REFERENCES
402
INDEX
413 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Kamble, Ganesh S. |
author2_role | edt |
author2_variant | g s k gs gsk |
author_GND | (DE-588)1248069056 |
author_facet | Kamble, Ganesh S. |
building | Verbundindex |
bvnumber | BV048325248 |
classification_rvk | VE 9850 ZN 3700 |
ctrlnum | (OCoLC)1339062960 (DE-599)DNB1233374613 |
dewey-full | 620.115 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620.115 |
dewey-search | 620.115 |
dewey-sort | 3620.115 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Chemie / Pharmazie Elektrotechnik / Elektronik / Nachrichtentechnik |
discipline_str_mv | Chemie / Pharmazie Elektrotechnik / Elektronik / Nachrichtentechnik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03110nam a2200793 c 4500</leader><controlfield tag="001">BV048325248</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230628 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220712s2022 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,N20</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,A06</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1233374613</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527346776</subfield><subfield code="c">Festeinband : circa EUR 149.00 (DE) (freier Preis)</subfield><subfield code="9">978-3-527-34677-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527346775</subfield><subfield code="9">3-527-34677-5</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9783527346776</subfield></datafield><datafield tag="028" ind1="5" ind2="2"><subfield code="a">Bestellnummer: 1134677 000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1339062960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1233374613</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-703</subfield><subfield code="a">DE-20</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">620.115</subfield><subfield code="2">23/ger</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VE 9850</subfield><subfield code="0">(DE-625)147163:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ZN 3700</subfield><subfield code="0">(DE-625)157333:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">620</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">2D functional nanomaterials</subfield><subfield code="b">synthesis, characterization, and applications</subfield><subfield code="c">edited by Ganesh S. Kamble</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">TwoD functional nanomaterials</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiii, 422 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">25 cm, 1012 g</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 2</subfield><subfield code="0">(DE-588)4321721-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Anorganische Strukturen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic Materials</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Elektronische Materialien</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energiespeicherung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energy Storage</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Funktionale Nanomaterialien</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Inorganic Structures</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materials Science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materialwissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CH74: Anorganische Strukturen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">EG04: Energiespeicherung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MS40: Elektronische Materialien</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Festkörperchemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Solid State Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CH92: Festkörperchemie</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nanostrukturiertes Material</subfield><subfield code="0">(DE-588)4342626-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 2</subfield><subfield code="0">(DE-588)4321721-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kamble, Ganesh S.</subfield><subfield code="0">(DE-588)1248069056</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-82395-6</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-82394-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-527-82396-3</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34677-6/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1233374613/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033704536&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033704536</subfield></datafield><datafield tag="883" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">dnb</subfield><subfield code="d">20220204</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#dnb</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV048325248 |
illustrated | Illustrated |
index_date | 2024-07-03T20:12:51Z |
indexdate | 2024-07-10T09:35:18Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527346776 3527346775 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033704536 |
oclc_num | 1339062960 |
open_access_boolean | |
owner | DE-703 DE-20 |
owner_facet | DE-703 DE-20 |
physical | xxiii, 422 Seiten Illustrationen, Diagramme 25 cm, 1012 g |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Wiley-VCH |
record_format | marc |
spelling | 2D functional nanomaterials synthesis, characterization, and applications edited by Ganesh S. Kamble TwoD functional nanomaterials Weinheim Wiley-VCH [2022] xxiii, 422 Seiten Illustrationen, Diagramme 25 cm, 1012 g txt rdacontent n rdamedia nc rdacarrier Nanostrukturiertes Material (DE-588)4342626-8 gnd rswk-swf Dimension 2 (DE-588)4321721-7 gnd rswk-swf Anorganische Strukturen Chemie Chemistry Electronic Materials Elektronische Materialien Energie Energiespeicherung Energy Energy Storage Funktionale Nanomaterialien Inorganic Structures Materials Science Materialwissenschaften CH74: Anorganische Strukturen EG04: Energiespeicherung MS40: Elektronische Materialien Festkörperchemie Solid State Chemistry CH92: Festkörperchemie (DE-588)4143413-4 Aufsatzsammlung gnd-content Nanostrukturiertes Material (DE-588)4342626-8 s Dimension 2 (DE-588)4321721-7 s DE-604 Kamble, Ganesh S. (DE-588)1248069056 edt Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-82395-6 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-82394-9 Erscheint auch als Online-Ausgabe 978-3-527-82396-3 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34677-6/ B:DE-101 application/pdf https://d-nb.info/1233374613/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033704536&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p dnb 20220204 DE-101 https://d-nb.info/provenance/plan#dnb |
spellingShingle | 2D functional nanomaterials synthesis, characterization, and applications Nanostrukturiertes Material (DE-588)4342626-8 gnd Dimension 2 (DE-588)4321721-7 gnd |
subject_GND | (DE-588)4342626-8 (DE-588)4321721-7 (DE-588)4143413-4 |
title | 2D functional nanomaterials synthesis, characterization, and applications |
title_alt | TwoD functional nanomaterials |
title_auth | 2D functional nanomaterials synthesis, characterization, and applications |
title_exact_search | 2D functional nanomaterials synthesis, characterization, and applications |
title_exact_search_txtP | 2D functional nanomaterials synthesis, characterization, and applications |
title_full | 2D functional nanomaterials synthesis, characterization, and applications edited by Ganesh S. Kamble |
title_fullStr | 2D functional nanomaterials synthesis, characterization, and applications edited by Ganesh S. Kamble |
title_full_unstemmed | 2D functional nanomaterials synthesis, characterization, and applications edited by Ganesh S. Kamble |
title_short | 2D functional nanomaterials |
title_sort | 2d functional nanomaterials synthesis characterization and applications |
title_sub | synthesis, characterization, and applications |
topic | Nanostrukturiertes Material (DE-588)4342626-8 gnd Dimension 2 (DE-588)4321721-7 gnd |
topic_facet | Nanostrukturiertes Material Dimension 2 Aufsatzsammlung |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34677-6/ https://d-nb.info/1233374613/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033704536&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT kambleganeshs 2dfunctionalnanomaterialssynthesischaracterizationandapplications AT wileyvch 2dfunctionalnanomaterialssynthesischaracterizationandapplications AT kambleganeshs twodfunctionalnanomaterials AT wileyvch twodfunctionalnanomaterials |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis