Introduction to Statistics in Metrology:
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cham
Springer International Publishing AG
2020
|
Schlagworte: | |
Online-Zugang: | FHD01 |
Beschreibung: | 1 Online-Ressource (357 Seiten) |
ISBN: | 9783030533298 |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV048323325 | ||
003 | DE-604 | ||
005 | 20230110 | ||
007 | cr|uuu---uuuuu | ||
008 | 220712s2020 |||| o||u| ||||||eng d | ||
020 | |a 9783030533298 |q (electronic bk.) |9 9783030533298 | ||
035 | |a (ZDB-30-PQE)EBC6417117 | ||
035 | |a (ZDB-30-PAD)EBC6417117 | ||
035 | |a (ZDB-89-EBL)EBL6417117 | ||
035 | |a (OCoLC)1225066674 | ||
035 | |a (DE-599)BVBBV048323325 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1050 | ||
100 | 1 | |a Crowder, Stephen |e Verfasser |4 aut | |
245 | 1 | 0 | |a Introduction to Statistics in Metrology |
264 | 1 | |a Cham |b Springer International Publishing AG |c 2020 | |
264 | 4 | |c ©2020 | |
300 | |a 1 Online-Ressource (357 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
505 | 8 | |a Intro -- Preface -- Contents -- About the Authors -- Chapter 1: Introduction -- 1.1 Measurement Uncertainty: Why Do We Care? -- 1.2 The History of Measurement -- 1.3 Measurement Science and Technological Development -- 1.4 Allegations of Deflated Footballs (''Deflategate'') -- 1.5 Fatality Rates During a Pandemic -- 1.6 Summary -- 1.7 Related Reading -- References -- Chapter 2: Basic Measurement Concepts -- 2.1 Introduction -- 2.2 Measurement Terminology -- 2.2.1 General Measurement Terminology -- 2.2.1.1 Measurand -- 2.2.1.2 True Value (True Value of a Quantity) -- 2.2.1.3 Measurement Accuracy -- 2.2.1.4 Measurement Precision -- 2.2.1.5 Resolution -- 2.2.1.6 Measurement Repeatability -- 2.2.1.7 Measurement Reproducibility -- 2.2.1.8 Independence of Measurements -- 2.2.2 Error Approach Terminology -- 2.2.2.1 Measurement Error -- 2.2.2.2 Systematic Measurement Error -- 2.2.2.3 Random Measurement Error -- 2.2.3 Uncertainty Approach Terminology -- 2.2.3.1 Measurement Uncertainty -- 2.2.3.2 Level of Confidence (Coverage Probability) -- 2.2.3.3 Coverage Interval -- 2.2.3.4 Measurement Model -- 2.2.4 Terminology of Calibration -- 2.2.4.1 Measuring and Test Equipment (M& -- TE) -- 2.2.4.2 Metrological Traceability -- 2.2.4.3 Calibration -- 2.2.4.4 Tolerance Test -- 2.2.4.5 Certification Uncertainty -- 2.3 Types of Measurements -- 2.3.1 Physical Measurements -- 2.3.2 Electrical Measurements -- 2.3.3 Other Types of Measurements -- 2.4 Sources of Uncertainty -- 2.4.1 Evaluating Sources of Uncertainty -- 2.5 Summary -- 2.6 Related Reading -- 2.7 Exercises -- References -- Chapter 3: The International System of Units, Traceability, and Calibration -- 3.1 History of the SI and Base Units -- 3.1.1 SI Constants -- 3.1.2 Time: Second (s) -- 3.1.3 Length: Meter (m) -- 3.1.4 Mass: Kilogram (kg) -- 3.1.5 Electric Current: Ampere (A) | |
505 | 8 | |a 3.1.6 Temperature: Kelvin (K) -- 3.1.7 Quantity of Substance: Mole (mol) -- 3.1.8 Luminous Intensity: Candela (cd) -- 3.2 Derived Units -- 3.3 Unit Realizations -- 3.3.1 Gauge Block Interferometer -- 3.3.2 Josephson Volt -- 3.4 Advancements in Unit Definitions -- 3.4.1 Kibble (Watt) Balance -- 3.4.2 Intrinsic Pressure Standard -- 3.5 Metrological Traceability -- 3.6 Measurement Standards -- 3.6.1 Certified Reference Materials -- 3.6.2 Check Standards -- 3.7 Calibration -- 3.7.1 The Calibration Cycle -- 3.7.2 Legal Aspects of Calibration -- 3.7.3 Technical Aspects of Calibration -- 3.7.4 Calibration Policies and Requirements -- 3.7.4.1 ISO 17025 -- 3.7.4.2 ANSI Z540.1 and ANSI/NCSL Z540.3:2006 -- 3.8 Summary -- 3.9 Related Reading -- 3.10 Exercises -- References -- Chapter 4: Introduction to Statistics and Probability -- 4.1 Introduction -- 4.2 Types of Data -- 4.3 Exploratory Data Analysis -- 4.3.1 Calculating Summary Statistics -- 4.3.1.1 Summary Statistics for Continuous Data -- 4.3.1.2 Summary Statistics for Discrete Data -- 4.3.2 Graphical Displays of Data -- 4.3.2.1 Graphical Displays for Continuous Data -- 4.3.2.2 Graphical Displays for Discrete Data -- 4.4 Probability Distributions -- 4.4.1 Identification of Probability Distributions -- 4.4.1.1 Continuous Distributions -- 4.4.1.2 Discrete Distributions -- 4.4.2 Estimating Distribution Parameters -- 4.4.3 Assessing Distributional Fit -- 4.5 Related Reading -- 4.6 Exercises -- References -- Chapter 5: Measurement Uncertainty in Decision Making -- 5.1 Introduction -- 5.2 Measurement Uncertainty and Risk -- 5.2.1 Measurement Uncertainty and Risk in Manufacturing -- 5.2.1.1 Test Uncertainty Ratio -- 5.2.1.2 Measurement Decisions -- 5.2.1.3 False Accept and False Reject Risks -- 5.2.1.4 Guardbanding -- 5.2.1.5 Risk with Biased Measurements -- 5.2.2 Measurement Uncertainty and Risk in Calibration | |
505 | 8 | |a 5.2.2.1 Decision Rules in Calibration -- 5.3 Summary -- 5.4 Related Reading -- 5.5 Exercises -- References -- Chapter 6: The Measurement Model and Uncertainty -- 6.1 Introduction -- 6.2 Uncertainty Analysis Framework -- 6.2.1 Standard Uncertainty -- 6.2.2 Type A Uncertainty Evaluation -- 6.2.3 Type B Uncertainty Evaluation -- 6.2.4 Combined Standard Uncertainty -- 6.2.5 Confidence Level and Expanded Uncertainty -- 6.3 Direct Measurements and the Basic Measurement Model -- 6.3.1 Case Study: Voltage Measurement -- 6.3.2 Discussion -- 6.4 Indirect Measurements and the Indirect Measurement Model -- 6.4.1 Case Study: Neutron Yield Measurement -- 6.4.2 Discussion -- 6.5 Related Reading -- 6.6 Exercises -- References -- Chapter 7: Analytical Methods for the Propagation of Uncertainties -- 7.1 Introduction -- 7.2 Mathematical Basis -- 7.3 The Simple Case: First-Order Terms with Uncorrelated Inputs -- 7.3.1 Measurement Examples -- 7.4 First-Order Terms with Correlated Inputs -- 7.4.1 Covariance, Correlation, and Effect on Uncertainty -- 7.4.2 Measurement Examples -- 7.5 Higher-Order Terms with Uncorrelated Inputs -- 7.5.1 Measurement Examples -- 7.6 Multiple Output Quantities -- 7.7 Limitations of the Analytical Approach -- 7.8 Related Reading -- 7.9 Exercises -- References -- Chapter 8: Monte Carlo Methods for the Propagation of Uncertainties -- 8.1 Introduction to Monte Carlo Methods -- 8.1.1 Random Sampling Techniques and Random Number Generation -- 8.1.1.1 Sampling from Normal and Non-Normal Distributions -- 8.1.1.2 Generating Correlated Random Samples (Normal Distribution) -- 8.1.2 Generation of Probability Density Functions Using Random Data -- 8.1.3 Computational Approaches -- 8.1.3.1 Linear Congruential Generator -- 8.1.3.2 Better PRNG Algorithms -- 8.2 Standard Monte Carlo for Uncertainty Propagation -- 8.2.1 Monte Carlo Techniques | |
505 | 8 | |a 8.2.1.1 Case Study: Calculating Density -- 8.2.1.2 Sensitivity Coefficients -- 8.2.1.3 Convergence Plots and Adaptive Sampling -- 8.3 Comparison to the GUM -- 8.3.1 Quantitative GUM Validity Test -- 8.4 Monte Carlo Case Studies -- 8.4.1 Case Study: Neutron Yield Measurement -- 8.4.2 Case Study: RC Circuit -- 8.5 Summary -- 8.6 Related Reading -- 8.7 Exercises -- References -- Chapter 9: Design of Experiments in Metrology -- 9.1 Introduction -- 9.2 Factorial Experiments in Metrology -- 9.2.1 Defining the Measurand and Objective of the Experiment -- 9.2.2 Selecting Factors to Incorporate in the Experiment -- 9.2.3 Selecting Factor Levels and Design Pattern -- 9.2.4 Analysis of CMM Errors via Design of Experiments (24 Full Factorial) -- 9.2.5 Finite Element Method (FEM) Uncertainty Analysis via Design of Experiments (27-3 Fractional Factorial) -- 9.2.6 Summary of Factorial DOEx Method -- 9.3 ANOVA Models in Metrology -- 9.3.1 Random Effects Models -- 9.3.2 Mixed Effects Models -- 9.3.3 Underlying ANOVA Assumptions -- 9.3.4 Gauge R& -- R Study (Random Effects Model) -- 9.3.5 Voltage Standard Uncertainty Analysis (Mixed Effects Model) -- 9.3.6 Summary of ANOVA Method -- 9.4 Related Reading -- 9.5 Exercises -- References -- Chapter 10: Determining Uncertainties in Fitted Curves -- 10.1 The Purpose of Fitting Curves to Experimental Data -- 10.1.1 Resistance vs. Temperature Data -- 10.1.2 Considerations When Fitting Models to Data -- 10.2 Methods for Fitting Curves to Experimental Data -- 10.2.1 Linear Least Squares -- 10.2.2 Uncertainty in Fitting Parameters -- 10.2.3 Weighted Least Squares: Non-constant u(y) -- 10.2.4 Weighted Least Squares: Uncertainty in Both x and y -- 10.3 Uncertainty of a Regression Line -- 10.3.1 Uncertainty of Fitting Parameters -- 10.3.2 Confidence Bands -- 10.3.3 Prediction Bands -- 10.4 How Good Is the Model? | |
505 | 8 | |a 10.4.1 Residual Analysis -- 10.4.2 Slope Test -- 10.4.3 Quantitative Residual Analysis -- 10.5 Uncertainty in Nonlinear Regression -- 10.5.1 Nonlinear Least Squares -- 10.5.2 Orthogonal Distance Regression -- 10.5.3 Confidence and Prediction Bands in Nonlinear Regression -- 10.6 Using Monte Carlo for Evaluating Uncertainties in Curve Fitting -- 10.6.1 Monte Carlo Approach -- 10.6.2 Markov-Chain Monte Carlo Approach -- 10.7 Case Study: Contact Resistance -- 10.8 Drift and Predicting Future Values -- 10.8.1 Uncertainty During Use -- 10.8.2 Validating Drift Uncertainty -- 10.8.2.1 Type B Uncertainty -- 10.8.2.2 Type A Measurement Uncertainty -- 10.8.2.3 Drift Uncertainty -- 10.8.2.4 Expanded Uncertainty -- 10.9 Calibration Interval Analysis -- 10.10 Summary -- 10.11 Related Reading -- 10.12 Exercises -- References -- Chapter 11: Special Topics in Metrology -- 11.1 Introduction -- 11.2 Statistical Process Control (SPC) -- 11.2.1 Case Study: Battery Tester Uncertainty and Monitoring Via SPC -- 11.2.2 Discussion -- 11.3 Binary Measurement Systems (BMS) -- 11.3.1 BMS Overview -- 11.3.2 BMS Case Study Introduced -- 11.3.3 Evaluation of a BMS -- 11.3.3.1 Within-Operator Agreement -- 11.3.3.2 Between-Operator Agreement -- 11.3.3.3 Assessing BMS Correctness -- 11.3.4 Sample Sizes for a BMS Study -- 11.4 Measurement System Analysis with Destructive Testing -- 11.5 Sample Size and Allocation of Samples in Metrology Experiments -- 11.6 Summary of Sample Size Recommendations -- 11.7 Bayesian Analysis in Metrology -- 11.8 Related Reading -- 11.9 Exercises -- References -- Appendix A: Acronyms and Abbreviations -- Appendix B: Guidelines for Valid Measurements -- Related Reading: Electrical Measurements -- Related Reading: Time and Frequency Measurements -- Related Reading: Physical Measurements -- Related Reading: Temperature Measurement -- Related Reading: Radiation | |
505 | 8 | |a Related Reading: General Measurement and Instrumentation Techniques | |
650 | 4 | |a Metrology | |
653 | 6 | |a Electronic books | |
700 | 1 | |a Delker, Collin |e Verfasser |4 aut | |
700 | 1 | |a Forrest, Eric |e Verfasser |4 aut | |
700 | 1 | |a Martin, Nevin |e Verfasser |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Crowder, Stephen |t Introduction to Statistics in Metrology |d Cham : Springer International Publishing AG,c2020 |z 9783030533281 |
912 | |a ZDB-30-PQE | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033702621 | ||
966 | e | |u https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6417117 |l FHD01 |p ZDB-30-PQE |q FHD01_PQE_Kauf |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184182156427264 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Crowder, Stephen Delker, Collin Forrest, Eric Martin, Nevin |
author_facet | Crowder, Stephen Delker, Collin Forrest, Eric Martin, Nevin |
author_role | aut aut aut aut |
author_sort | Crowder, Stephen |
author_variant | s c sc c d cd e f ef n m nm |
building | Verbundindex |
bvnumber | BV048323325 |
collection | ZDB-30-PQE |
contents | Intro -- Preface -- Contents -- About the Authors -- Chapter 1: Introduction -- 1.1 Measurement Uncertainty: Why Do We Care? -- 1.2 The History of Measurement -- 1.3 Measurement Science and Technological Development -- 1.4 Allegations of Deflated Footballs (''Deflategate'') -- 1.5 Fatality Rates During a Pandemic -- 1.6 Summary -- 1.7 Related Reading -- References -- Chapter 2: Basic Measurement Concepts -- 2.1 Introduction -- 2.2 Measurement Terminology -- 2.2.1 General Measurement Terminology -- 2.2.1.1 Measurand -- 2.2.1.2 True Value (True Value of a Quantity) -- 2.2.1.3 Measurement Accuracy -- 2.2.1.4 Measurement Precision -- 2.2.1.5 Resolution -- 2.2.1.6 Measurement Repeatability -- 2.2.1.7 Measurement Reproducibility -- 2.2.1.8 Independence of Measurements -- 2.2.2 Error Approach Terminology -- 2.2.2.1 Measurement Error -- 2.2.2.2 Systematic Measurement Error -- 2.2.2.3 Random Measurement Error -- 2.2.3 Uncertainty Approach Terminology -- 2.2.3.1 Measurement Uncertainty -- 2.2.3.2 Level of Confidence (Coverage Probability) -- 2.2.3.3 Coverage Interval -- 2.2.3.4 Measurement Model -- 2.2.4 Terminology of Calibration -- 2.2.4.1 Measuring and Test Equipment (M& -- TE) -- 2.2.4.2 Metrological Traceability -- 2.2.4.3 Calibration -- 2.2.4.4 Tolerance Test -- 2.2.4.5 Certification Uncertainty -- 2.3 Types of Measurements -- 2.3.1 Physical Measurements -- 2.3.2 Electrical Measurements -- 2.3.3 Other Types of Measurements -- 2.4 Sources of Uncertainty -- 2.4.1 Evaluating Sources of Uncertainty -- 2.5 Summary -- 2.6 Related Reading -- 2.7 Exercises -- References -- Chapter 3: The International System of Units, Traceability, and Calibration -- 3.1 History of the SI and Base Units -- 3.1.1 SI Constants -- 3.1.2 Time: Second (s) -- 3.1.3 Length: Meter (m) -- 3.1.4 Mass: Kilogram (kg) -- 3.1.5 Electric Current: Ampere (A) 3.1.6 Temperature: Kelvin (K) -- 3.1.7 Quantity of Substance: Mole (mol) -- 3.1.8 Luminous Intensity: Candela (cd) -- 3.2 Derived Units -- 3.3 Unit Realizations -- 3.3.1 Gauge Block Interferometer -- 3.3.2 Josephson Volt -- 3.4 Advancements in Unit Definitions -- 3.4.1 Kibble (Watt) Balance -- 3.4.2 Intrinsic Pressure Standard -- 3.5 Metrological Traceability -- 3.6 Measurement Standards -- 3.6.1 Certified Reference Materials -- 3.6.2 Check Standards -- 3.7 Calibration -- 3.7.1 The Calibration Cycle -- 3.7.2 Legal Aspects of Calibration -- 3.7.3 Technical Aspects of Calibration -- 3.7.4 Calibration Policies and Requirements -- 3.7.4.1 ISO 17025 -- 3.7.4.2 ANSI Z540.1 and ANSI/NCSL Z540.3:2006 -- 3.8 Summary -- 3.9 Related Reading -- 3.10 Exercises -- References -- Chapter 4: Introduction to Statistics and Probability -- 4.1 Introduction -- 4.2 Types of Data -- 4.3 Exploratory Data Analysis -- 4.3.1 Calculating Summary Statistics -- 4.3.1.1 Summary Statistics for Continuous Data -- 4.3.1.2 Summary Statistics for Discrete Data -- 4.3.2 Graphical Displays of Data -- 4.3.2.1 Graphical Displays for Continuous Data -- 4.3.2.2 Graphical Displays for Discrete Data -- 4.4 Probability Distributions -- 4.4.1 Identification of Probability Distributions -- 4.4.1.1 Continuous Distributions -- 4.4.1.2 Discrete Distributions -- 4.4.2 Estimating Distribution Parameters -- 4.4.3 Assessing Distributional Fit -- 4.5 Related Reading -- 4.6 Exercises -- References -- Chapter 5: Measurement Uncertainty in Decision Making -- 5.1 Introduction -- 5.2 Measurement Uncertainty and Risk -- 5.2.1 Measurement Uncertainty and Risk in Manufacturing -- 5.2.1.1 Test Uncertainty Ratio -- 5.2.1.2 Measurement Decisions -- 5.2.1.3 False Accept and False Reject Risks -- 5.2.1.4 Guardbanding -- 5.2.1.5 Risk with Biased Measurements -- 5.2.2 Measurement Uncertainty and Risk in Calibration 5.2.2.1 Decision Rules in Calibration -- 5.3 Summary -- 5.4 Related Reading -- 5.5 Exercises -- References -- Chapter 6: The Measurement Model and Uncertainty -- 6.1 Introduction -- 6.2 Uncertainty Analysis Framework -- 6.2.1 Standard Uncertainty -- 6.2.2 Type A Uncertainty Evaluation -- 6.2.3 Type B Uncertainty Evaluation -- 6.2.4 Combined Standard Uncertainty -- 6.2.5 Confidence Level and Expanded Uncertainty -- 6.3 Direct Measurements and the Basic Measurement Model -- 6.3.1 Case Study: Voltage Measurement -- 6.3.2 Discussion -- 6.4 Indirect Measurements and the Indirect Measurement Model -- 6.4.1 Case Study: Neutron Yield Measurement -- 6.4.2 Discussion -- 6.5 Related Reading -- 6.6 Exercises -- References -- Chapter 7: Analytical Methods for the Propagation of Uncertainties -- 7.1 Introduction -- 7.2 Mathematical Basis -- 7.3 The Simple Case: First-Order Terms with Uncorrelated Inputs -- 7.3.1 Measurement Examples -- 7.4 First-Order Terms with Correlated Inputs -- 7.4.1 Covariance, Correlation, and Effect on Uncertainty -- 7.4.2 Measurement Examples -- 7.5 Higher-Order Terms with Uncorrelated Inputs -- 7.5.1 Measurement Examples -- 7.6 Multiple Output Quantities -- 7.7 Limitations of the Analytical Approach -- 7.8 Related Reading -- 7.9 Exercises -- References -- Chapter 8: Monte Carlo Methods for the Propagation of Uncertainties -- 8.1 Introduction to Monte Carlo Methods -- 8.1.1 Random Sampling Techniques and Random Number Generation -- 8.1.1.1 Sampling from Normal and Non-Normal Distributions -- 8.1.1.2 Generating Correlated Random Samples (Normal Distribution) -- 8.1.2 Generation of Probability Density Functions Using Random Data -- 8.1.3 Computational Approaches -- 8.1.3.1 Linear Congruential Generator -- 8.1.3.2 Better PRNG Algorithms -- 8.2 Standard Monte Carlo for Uncertainty Propagation -- 8.2.1 Monte Carlo Techniques 8.2.1.1 Case Study: Calculating Density -- 8.2.1.2 Sensitivity Coefficients -- 8.2.1.3 Convergence Plots and Adaptive Sampling -- 8.3 Comparison to the GUM -- 8.3.1 Quantitative GUM Validity Test -- 8.4 Monte Carlo Case Studies -- 8.4.1 Case Study: Neutron Yield Measurement -- 8.4.2 Case Study: RC Circuit -- 8.5 Summary -- 8.6 Related Reading -- 8.7 Exercises -- References -- Chapter 9: Design of Experiments in Metrology -- 9.1 Introduction -- 9.2 Factorial Experiments in Metrology -- 9.2.1 Defining the Measurand and Objective of the Experiment -- 9.2.2 Selecting Factors to Incorporate in the Experiment -- 9.2.3 Selecting Factor Levels and Design Pattern -- 9.2.4 Analysis of CMM Errors via Design of Experiments (24 Full Factorial) -- 9.2.5 Finite Element Method (FEM) Uncertainty Analysis via Design of Experiments (27-3 Fractional Factorial) -- 9.2.6 Summary of Factorial DOEx Method -- 9.3 ANOVA Models in Metrology -- 9.3.1 Random Effects Models -- 9.3.2 Mixed Effects Models -- 9.3.3 Underlying ANOVA Assumptions -- 9.3.4 Gauge R& -- R Study (Random Effects Model) -- 9.3.5 Voltage Standard Uncertainty Analysis (Mixed Effects Model) -- 9.3.6 Summary of ANOVA Method -- 9.4 Related Reading -- 9.5 Exercises -- References -- Chapter 10: Determining Uncertainties in Fitted Curves -- 10.1 The Purpose of Fitting Curves to Experimental Data -- 10.1.1 Resistance vs. Temperature Data -- 10.1.2 Considerations When Fitting Models to Data -- 10.2 Methods for Fitting Curves to Experimental Data -- 10.2.1 Linear Least Squares -- 10.2.2 Uncertainty in Fitting Parameters -- 10.2.3 Weighted Least Squares: Non-constant u(y) -- 10.2.4 Weighted Least Squares: Uncertainty in Both x and y -- 10.3 Uncertainty of a Regression Line -- 10.3.1 Uncertainty of Fitting Parameters -- 10.3.2 Confidence Bands -- 10.3.3 Prediction Bands -- 10.4 How Good Is the Model? 10.4.1 Residual Analysis -- 10.4.2 Slope Test -- 10.4.3 Quantitative Residual Analysis -- 10.5 Uncertainty in Nonlinear Regression -- 10.5.1 Nonlinear Least Squares -- 10.5.2 Orthogonal Distance Regression -- 10.5.3 Confidence and Prediction Bands in Nonlinear Regression -- 10.6 Using Monte Carlo for Evaluating Uncertainties in Curve Fitting -- 10.6.1 Monte Carlo Approach -- 10.6.2 Markov-Chain Monte Carlo Approach -- 10.7 Case Study: Contact Resistance -- 10.8 Drift and Predicting Future Values -- 10.8.1 Uncertainty During Use -- 10.8.2 Validating Drift Uncertainty -- 10.8.2.1 Type B Uncertainty -- 10.8.2.2 Type A Measurement Uncertainty -- 10.8.2.3 Drift Uncertainty -- 10.8.2.4 Expanded Uncertainty -- 10.9 Calibration Interval Analysis -- 10.10 Summary -- 10.11 Related Reading -- 10.12 Exercises -- References -- Chapter 11: Special Topics in Metrology -- 11.1 Introduction -- 11.2 Statistical Process Control (SPC) -- 11.2.1 Case Study: Battery Tester Uncertainty and Monitoring Via SPC -- 11.2.2 Discussion -- 11.3 Binary Measurement Systems (BMS) -- 11.3.1 BMS Overview -- 11.3.2 BMS Case Study Introduced -- 11.3.3 Evaluation of a BMS -- 11.3.3.1 Within-Operator Agreement -- 11.3.3.2 Between-Operator Agreement -- 11.3.3.3 Assessing BMS Correctness -- 11.3.4 Sample Sizes for a BMS Study -- 11.4 Measurement System Analysis with Destructive Testing -- 11.5 Sample Size and Allocation of Samples in Metrology Experiments -- 11.6 Summary of Sample Size Recommendations -- 11.7 Bayesian Analysis in Metrology -- 11.8 Related Reading -- 11.9 Exercises -- References -- Appendix A: Acronyms and Abbreviations -- Appendix B: Guidelines for Valid Measurements -- Related Reading: Electrical Measurements -- Related Reading: Time and Frequency Measurements -- Related Reading: Physical Measurements -- Related Reading: Temperature Measurement -- Related Reading: Radiation Related Reading: General Measurement and Instrumentation Techniques |
ctrlnum | (ZDB-30-PQE)EBC6417117 (ZDB-30-PAD)EBC6417117 (ZDB-89-EBL)EBL6417117 (OCoLC)1225066674 (DE-599)BVBBV048323325 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>10950nmm a2200469 c 4500</leader><controlfield tag="001">BV048323325</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230110 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220712s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783030533298</subfield><subfield code="q">(electronic bk.)</subfield><subfield code="9">9783030533298</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)EBC6417117</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PAD)EBC6417117</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-89-EBL)EBL6417117</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1225066674</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048323325</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Crowder, Stephen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Introduction to Statistics in Metrology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham</subfield><subfield code="b">Springer International Publishing AG</subfield><subfield code="c">2020</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (357 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- About the Authors -- Chapter 1: Introduction -- 1.1 Measurement Uncertainty: Why Do We Care? -- 1.2 The History of Measurement -- 1.3 Measurement Science and Technological Development -- 1.4 Allegations of Deflated Footballs (''Deflategate'') -- 1.5 Fatality Rates During a Pandemic -- 1.6 Summary -- 1.7 Related Reading -- References -- Chapter 2: Basic Measurement Concepts -- 2.1 Introduction -- 2.2 Measurement Terminology -- 2.2.1 General Measurement Terminology -- 2.2.1.1 Measurand -- 2.2.1.2 True Value (True Value of a Quantity) -- 2.2.1.3 Measurement Accuracy -- 2.2.1.4 Measurement Precision -- 2.2.1.5 Resolution -- 2.2.1.6 Measurement Repeatability -- 2.2.1.7 Measurement Reproducibility -- 2.2.1.8 Independence of Measurements -- 2.2.2 Error Approach Terminology -- 2.2.2.1 Measurement Error -- 2.2.2.2 Systematic Measurement Error -- 2.2.2.3 Random Measurement Error -- 2.2.3 Uncertainty Approach Terminology -- 2.2.3.1 Measurement Uncertainty -- 2.2.3.2 Level of Confidence (Coverage Probability) -- 2.2.3.3 Coverage Interval -- 2.2.3.4 Measurement Model -- 2.2.4 Terminology of Calibration -- 2.2.4.1 Measuring and Test Equipment (M&amp -- TE) -- 2.2.4.2 Metrological Traceability -- 2.2.4.3 Calibration -- 2.2.4.4 Tolerance Test -- 2.2.4.5 Certification Uncertainty -- 2.3 Types of Measurements -- 2.3.1 Physical Measurements -- 2.3.2 Electrical Measurements -- 2.3.3 Other Types of Measurements -- 2.4 Sources of Uncertainty -- 2.4.1 Evaluating Sources of Uncertainty -- 2.5 Summary -- 2.6 Related Reading -- 2.7 Exercises -- References -- Chapter 3: The International System of Units, Traceability, and Calibration -- 3.1 History of the SI and Base Units -- 3.1.1 SI Constants -- 3.1.2 Time: Second (s) -- 3.1.3 Length: Meter (m) -- 3.1.4 Mass: Kilogram (kg) -- 3.1.5 Electric Current: Ampere (A)</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.1.6 Temperature: Kelvin (K) -- 3.1.7 Quantity of Substance: Mole (mol) -- 3.1.8 Luminous Intensity: Candela (cd) -- 3.2 Derived Units -- 3.3 Unit Realizations -- 3.3.1 Gauge Block Interferometer -- 3.3.2 Josephson Volt -- 3.4 Advancements in Unit Definitions -- 3.4.1 Kibble (Watt) Balance -- 3.4.2 Intrinsic Pressure Standard -- 3.5 Metrological Traceability -- 3.6 Measurement Standards -- 3.6.1 Certified Reference Materials -- 3.6.2 Check Standards -- 3.7 Calibration -- 3.7.1 The Calibration Cycle -- 3.7.2 Legal Aspects of Calibration -- 3.7.3 Technical Aspects of Calibration -- 3.7.4 Calibration Policies and Requirements -- 3.7.4.1 ISO 17025 -- 3.7.4.2 ANSI Z540.1 and ANSI/NCSL Z540.3:2006 -- 3.8 Summary -- 3.9 Related Reading -- 3.10 Exercises -- References -- Chapter 4: Introduction to Statistics and Probability -- 4.1 Introduction -- 4.2 Types of Data -- 4.3 Exploratory Data Analysis -- 4.3.1 Calculating Summary Statistics -- 4.3.1.1 Summary Statistics for Continuous Data -- 4.3.1.2 Summary Statistics for Discrete Data -- 4.3.2 Graphical Displays of Data -- 4.3.2.1 Graphical Displays for Continuous Data -- 4.3.2.2 Graphical Displays for Discrete Data -- 4.4 Probability Distributions -- 4.4.1 Identification of Probability Distributions -- 4.4.1.1 Continuous Distributions -- 4.4.1.2 Discrete Distributions -- 4.4.2 Estimating Distribution Parameters -- 4.4.3 Assessing Distributional Fit -- 4.5 Related Reading -- 4.6 Exercises -- References -- Chapter 5: Measurement Uncertainty in Decision Making -- 5.1 Introduction -- 5.2 Measurement Uncertainty and Risk -- 5.2.1 Measurement Uncertainty and Risk in Manufacturing -- 5.2.1.1 Test Uncertainty Ratio -- 5.2.1.2 Measurement Decisions -- 5.2.1.3 False Accept and False Reject Risks -- 5.2.1.4 Guardbanding -- 5.2.1.5 Risk with Biased Measurements -- 5.2.2 Measurement Uncertainty and Risk in Calibration</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.2.2.1 Decision Rules in Calibration -- 5.3 Summary -- 5.4 Related Reading -- 5.5 Exercises -- References -- Chapter 6: The Measurement Model and Uncertainty -- 6.1 Introduction -- 6.2 Uncertainty Analysis Framework -- 6.2.1 Standard Uncertainty -- 6.2.2 Type A Uncertainty Evaluation -- 6.2.3 Type B Uncertainty Evaluation -- 6.2.4 Combined Standard Uncertainty -- 6.2.5 Confidence Level and Expanded Uncertainty -- 6.3 Direct Measurements and the Basic Measurement Model -- 6.3.1 Case Study: Voltage Measurement -- 6.3.2 Discussion -- 6.4 Indirect Measurements and the Indirect Measurement Model -- 6.4.1 Case Study: Neutron Yield Measurement -- 6.4.2 Discussion -- 6.5 Related Reading -- 6.6 Exercises -- References -- Chapter 7: Analytical Methods for the Propagation of Uncertainties -- 7.1 Introduction -- 7.2 Mathematical Basis -- 7.3 The Simple Case: First-Order Terms with Uncorrelated Inputs -- 7.3.1 Measurement Examples -- 7.4 First-Order Terms with Correlated Inputs -- 7.4.1 Covariance, Correlation, and Effect on Uncertainty -- 7.4.2 Measurement Examples -- 7.5 Higher-Order Terms with Uncorrelated Inputs -- 7.5.1 Measurement Examples -- 7.6 Multiple Output Quantities -- 7.7 Limitations of the Analytical Approach -- 7.8 Related Reading -- 7.9 Exercises -- References -- Chapter 8: Monte Carlo Methods for the Propagation of Uncertainties -- 8.1 Introduction to Monte Carlo Methods -- 8.1.1 Random Sampling Techniques and Random Number Generation -- 8.1.1.1 Sampling from Normal and Non-Normal Distributions -- 8.1.1.2 Generating Correlated Random Samples (Normal Distribution) -- 8.1.2 Generation of Probability Density Functions Using Random Data -- 8.1.3 Computational Approaches -- 8.1.3.1 Linear Congruential Generator -- 8.1.3.2 Better PRNG Algorithms -- 8.2 Standard Monte Carlo for Uncertainty Propagation -- 8.2.1 Monte Carlo Techniques</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.2.1.1 Case Study: Calculating Density -- 8.2.1.2 Sensitivity Coefficients -- 8.2.1.3 Convergence Plots and Adaptive Sampling -- 8.3 Comparison to the GUM -- 8.3.1 Quantitative GUM Validity Test -- 8.4 Monte Carlo Case Studies -- 8.4.1 Case Study: Neutron Yield Measurement -- 8.4.2 Case Study: RC Circuit -- 8.5 Summary -- 8.6 Related Reading -- 8.7 Exercises -- References -- Chapter 9: Design of Experiments in Metrology -- 9.1 Introduction -- 9.2 Factorial Experiments in Metrology -- 9.2.1 Defining the Measurand and Objective of the Experiment -- 9.2.2 Selecting Factors to Incorporate in the Experiment -- 9.2.3 Selecting Factor Levels and Design Pattern -- 9.2.4 Analysis of CMM Errors via Design of Experiments (24 Full Factorial) -- 9.2.5 Finite Element Method (FEM) Uncertainty Analysis via Design of Experiments (27-3 Fractional Factorial) -- 9.2.6 Summary of Factorial DOEx Method -- 9.3 ANOVA Models in Metrology -- 9.3.1 Random Effects Models -- 9.3.2 Mixed Effects Models -- 9.3.3 Underlying ANOVA Assumptions -- 9.3.4 Gauge R&amp -- R Study (Random Effects Model) -- 9.3.5 Voltage Standard Uncertainty Analysis (Mixed Effects Model) -- 9.3.6 Summary of ANOVA Method -- 9.4 Related Reading -- 9.5 Exercises -- References -- Chapter 10: Determining Uncertainties in Fitted Curves -- 10.1 The Purpose of Fitting Curves to Experimental Data -- 10.1.1 Resistance vs. Temperature Data -- 10.1.2 Considerations When Fitting Models to Data -- 10.2 Methods for Fitting Curves to Experimental Data -- 10.2.1 Linear Least Squares -- 10.2.2 Uncertainty in Fitting Parameters -- 10.2.3 Weighted Least Squares: Non-constant u(y) -- 10.2.4 Weighted Least Squares: Uncertainty in Both x and y -- 10.3 Uncertainty of a Regression Line -- 10.3.1 Uncertainty of Fitting Parameters -- 10.3.2 Confidence Bands -- 10.3.3 Prediction Bands -- 10.4 How Good Is the Model?</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.4.1 Residual Analysis -- 10.4.2 Slope Test -- 10.4.3 Quantitative Residual Analysis -- 10.5 Uncertainty in Nonlinear Regression -- 10.5.1 Nonlinear Least Squares -- 10.5.2 Orthogonal Distance Regression -- 10.5.3 Confidence and Prediction Bands in Nonlinear Regression -- 10.6 Using Monte Carlo for Evaluating Uncertainties in Curve Fitting -- 10.6.1 Monte Carlo Approach -- 10.6.2 Markov-Chain Monte Carlo Approach -- 10.7 Case Study: Contact Resistance -- 10.8 Drift and Predicting Future Values -- 10.8.1 Uncertainty During Use -- 10.8.2 Validating Drift Uncertainty -- 10.8.2.1 Type B Uncertainty -- 10.8.2.2 Type A Measurement Uncertainty -- 10.8.2.3 Drift Uncertainty -- 10.8.2.4 Expanded Uncertainty -- 10.9 Calibration Interval Analysis -- 10.10 Summary -- 10.11 Related Reading -- 10.12 Exercises -- References -- Chapter 11: Special Topics in Metrology -- 11.1 Introduction -- 11.2 Statistical Process Control (SPC) -- 11.2.1 Case Study: Battery Tester Uncertainty and Monitoring Via SPC -- 11.2.2 Discussion -- 11.3 Binary Measurement Systems (BMS) -- 11.3.1 BMS Overview -- 11.3.2 BMS Case Study Introduced -- 11.3.3 Evaluation of a BMS -- 11.3.3.1 Within-Operator Agreement -- 11.3.3.2 Between-Operator Agreement -- 11.3.3.3 Assessing BMS Correctness -- 11.3.4 Sample Sizes for a BMS Study -- 11.4 Measurement System Analysis with Destructive Testing -- 11.5 Sample Size and Allocation of Samples in Metrology Experiments -- 11.6 Summary of Sample Size Recommendations -- 11.7 Bayesian Analysis in Metrology -- 11.8 Related Reading -- 11.9 Exercises -- References -- Appendix A: Acronyms and Abbreviations -- Appendix B: Guidelines for Valid Measurements -- Related Reading: Electrical Measurements -- Related Reading: Time and Frequency Measurements -- Related Reading: Physical Measurements -- Related Reading: Temperature Measurement -- Related Reading: Radiation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Related Reading: General Measurement and Instrumentation Techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metrology</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Delker, Collin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Forrest, Eric</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martin, Nevin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Crowder, Stephen</subfield><subfield code="t">Introduction to Statistics in Metrology</subfield><subfield code="d">Cham : Springer International Publishing AG,c2020</subfield><subfield code="z">9783030533281</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033702621</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/th-deggendorf/detail.action?docID=6417117</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">FHD01_PQE_Kauf</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048323325 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:12:42Z |
indexdate | 2024-07-10T09:35:16Z |
institution | BVB |
isbn | 9783030533298 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033702621 |
oclc_num | 1225066674 |
open_access_boolean | |
owner | DE-1050 |
owner_facet | DE-1050 |
physical | 1 Online-Ressource (357 Seiten) |
psigel | ZDB-30-PQE ZDB-30-PQE FHD01_PQE_Kauf |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | Springer International Publishing AG |
record_format | marc |
spelling | Crowder, Stephen Verfasser aut Introduction to Statistics in Metrology Cham Springer International Publishing AG 2020 ©2020 1 Online-Ressource (357 Seiten) txt rdacontent c rdamedia cr rdacarrier Intro -- Preface -- Contents -- About the Authors -- Chapter 1: Introduction -- 1.1 Measurement Uncertainty: Why Do We Care? -- 1.2 The History of Measurement -- 1.3 Measurement Science and Technological Development -- 1.4 Allegations of Deflated Footballs (''Deflategate'') -- 1.5 Fatality Rates During a Pandemic -- 1.6 Summary -- 1.7 Related Reading -- References -- Chapter 2: Basic Measurement Concepts -- 2.1 Introduction -- 2.2 Measurement Terminology -- 2.2.1 General Measurement Terminology -- 2.2.1.1 Measurand -- 2.2.1.2 True Value (True Value of a Quantity) -- 2.2.1.3 Measurement Accuracy -- 2.2.1.4 Measurement Precision -- 2.2.1.5 Resolution -- 2.2.1.6 Measurement Repeatability -- 2.2.1.7 Measurement Reproducibility -- 2.2.1.8 Independence of Measurements -- 2.2.2 Error Approach Terminology -- 2.2.2.1 Measurement Error -- 2.2.2.2 Systematic Measurement Error -- 2.2.2.3 Random Measurement Error -- 2.2.3 Uncertainty Approach Terminology -- 2.2.3.1 Measurement Uncertainty -- 2.2.3.2 Level of Confidence (Coverage Probability) -- 2.2.3.3 Coverage Interval -- 2.2.3.4 Measurement Model -- 2.2.4 Terminology of Calibration -- 2.2.4.1 Measuring and Test Equipment (M& -- TE) -- 2.2.4.2 Metrological Traceability -- 2.2.4.3 Calibration -- 2.2.4.4 Tolerance Test -- 2.2.4.5 Certification Uncertainty -- 2.3 Types of Measurements -- 2.3.1 Physical Measurements -- 2.3.2 Electrical Measurements -- 2.3.3 Other Types of Measurements -- 2.4 Sources of Uncertainty -- 2.4.1 Evaluating Sources of Uncertainty -- 2.5 Summary -- 2.6 Related Reading -- 2.7 Exercises -- References -- Chapter 3: The International System of Units, Traceability, and Calibration -- 3.1 History of the SI and Base Units -- 3.1.1 SI Constants -- 3.1.2 Time: Second (s) -- 3.1.3 Length: Meter (m) -- 3.1.4 Mass: Kilogram (kg) -- 3.1.5 Electric Current: Ampere (A) 3.1.6 Temperature: Kelvin (K) -- 3.1.7 Quantity of Substance: Mole (mol) -- 3.1.8 Luminous Intensity: Candela (cd) -- 3.2 Derived Units -- 3.3 Unit Realizations -- 3.3.1 Gauge Block Interferometer -- 3.3.2 Josephson Volt -- 3.4 Advancements in Unit Definitions -- 3.4.1 Kibble (Watt) Balance -- 3.4.2 Intrinsic Pressure Standard -- 3.5 Metrological Traceability -- 3.6 Measurement Standards -- 3.6.1 Certified Reference Materials -- 3.6.2 Check Standards -- 3.7 Calibration -- 3.7.1 The Calibration Cycle -- 3.7.2 Legal Aspects of Calibration -- 3.7.3 Technical Aspects of Calibration -- 3.7.4 Calibration Policies and Requirements -- 3.7.4.1 ISO 17025 -- 3.7.4.2 ANSI Z540.1 and ANSI/NCSL Z540.3:2006 -- 3.8 Summary -- 3.9 Related Reading -- 3.10 Exercises -- References -- Chapter 4: Introduction to Statistics and Probability -- 4.1 Introduction -- 4.2 Types of Data -- 4.3 Exploratory Data Analysis -- 4.3.1 Calculating Summary Statistics -- 4.3.1.1 Summary Statistics for Continuous Data -- 4.3.1.2 Summary Statistics for Discrete Data -- 4.3.2 Graphical Displays of Data -- 4.3.2.1 Graphical Displays for Continuous Data -- 4.3.2.2 Graphical Displays for Discrete Data -- 4.4 Probability Distributions -- 4.4.1 Identification of Probability Distributions -- 4.4.1.1 Continuous Distributions -- 4.4.1.2 Discrete Distributions -- 4.4.2 Estimating Distribution Parameters -- 4.4.3 Assessing Distributional Fit -- 4.5 Related Reading -- 4.6 Exercises -- References -- Chapter 5: Measurement Uncertainty in Decision Making -- 5.1 Introduction -- 5.2 Measurement Uncertainty and Risk -- 5.2.1 Measurement Uncertainty and Risk in Manufacturing -- 5.2.1.1 Test Uncertainty Ratio -- 5.2.1.2 Measurement Decisions -- 5.2.1.3 False Accept and False Reject Risks -- 5.2.1.4 Guardbanding -- 5.2.1.5 Risk with Biased Measurements -- 5.2.2 Measurement Uncertainty and Risk in Calibration 5.2.2.1 Decision Rules in Calibration -- 5.3 Summary -- 5.4 Related Reading -- 5.5 Exercises -- References -- Chapter 6: The Measurement Model and Uncertainty -- 6.1 Introduction -- 6.2 Uncertainty Analysis Framework -- 6.2.1 Standard Uncertainty -- 6.2.2 Type A Uncertainty Evaluation -- 6.2.3 Type B Uncertainty Evaluation -- 6.2.4 Combined Standard Uncertainty -- 6.2.5 Confidence Level and Expanded Uncertainty -- 6.3 Direct Measurements and the Basic Measurement Model -- 6.3.1 Case Study: Voltage Measurement -- 6.3.2 Discussion -- 6.4 Indirect Measurements and the Indirect Measurement Model -- 6.4.1 Case Study: Neutron Yield Measurement -- 6.4.2 Discussion -- 6.5 Related Reading -- 6.6 Exercises -- References -- Chapter 7: Analytical Methods for the Propagation of Uncertainties -- 7.1 Introduction -- 7.2 Mathematical Basis -- 7.3 The Simple Case: First-Order Terms with Uncorrelated Inputs -- 7.3.1 Measurement Examples -- 7.4 First-Order Terms with Correlated Inputs -- 7.4.1 Covariance, Correlation, and Effect on Uncertainty -- 7.4.2 Measurement Examples -- 7.5 Higher-Order Terms with Uncorrelated Inputs -- 7.5.1 Measurement Examples -- 7.6 Multiple Output Quantities -- 7.7 Limitations of the Analytical Approach -- 7.8 Related Reading -- 7.9 Exercises -- References -- Chapter 8: Monte Carlo Methods for the Propagation of Uncertainties -- 8.1 Introduction to Monte Carlo Methods -- 8.1.1 Random Sampling Techniques and Random Number Generation -- 8.1.1.1 Sampling from Normal and Non-Normal Distributions -- 8.1.1.2 Generating Correlated Random Samples (Normal Distribution) -- 8.1.2 Generation of Probability Density Functions Using Random Data -- 8.1.3 Computational Approaches -- 8.1.3.1 Linear Congruential Generator -- 8.1.3.2 Better PRNG Algorithms -- 8.2 Standard Monte Carlo for Uncertainty Propagation -- 8.2.1 Monte Carlo Techniques 8.2.1.1 Case Study: Calculating Density -- 8.2.1.2 Sensitivity Coefficients -- 8.2.1.3 Convergence Plots and Adaptive Sampling -- 8.3 Comparison to the GUM -- 8.3.1 Quantitative GUM Validity Test -- 8.4 Monte Carlo Case Studies -- 8.4.1 Case Study: Neutron Yield Measurement -- 8.4.2 Case Study: RC Circuit -- 8.5 Summary -- 8.6 Related Reading -- 8.7 Exercises -- References -- Chapter 9: Design of Experiments in Metrology -- 9.1 Introduction -- 9.2 Factorial Experiments in Metrology -- 9.2.1 Defining the Measurand and Objective of the Experiment -- 9.2.2 Selecting Factors to Incorporate in the Experiment -- 9.2.3 Selecting Factor Levels and Design Pattern -- 9.2.4 Analysis of CMM Errors via Design of Experiments (24 Full Factorial) -- 9.2.5 Finite Element Method (FEM) Uncertainty Analysis via Design of Experiments (27-3 Fractional Factorial) -- 9.2.6 Summary of Factorial DOEx Method -- 9.3 ANOVA Models in Metrology -- 9.3.1 Random Effects Models -- 9.3.2 Mixed Effects Models -- 9.3.3 Underlying ANOVA Assumptions -- 9.3.4 Gauge R& -- R Study (Random Effects Model) -- 9.3.5 Voltage Standard Uncertainty Analysis (Mixed Effects Model) -- 9.3.6 Summary of ANOVA Method -- 9.4 Related Reading -- 9.5 Exercises -- References -- Chapter 10: Determining Uncertainties in Fitted Curves -- 10.1 The Purpose of Fitting Curves to Experimental Data -- 10.1.1 Resistance vs. Temperature Data -- 10.1.2 Considerations When Fitting Models to Data -- 10.2 Methods for Fitting Curves to Experimental Data -- 10.2.1 Linear Least Squares -- 10.2.2 Uncertainty in Fitting Parameters -- 10.2.3 Weighted Least Squares: Non-constant u(y) -- 10.2.4 Weighted Least Squares: Uncertainty in Both x and y -- 10.3 Uncertainty of a Regression Line -- 10.3.1 Uncertainty of Fitting Parameters -- 10.3.2 Confidence Bands -- 10.3.3 Prediction Bands -- 10.4 How Good Is the Model? 10.4.1 Residual Analysis -- 10.4.2 Slope Test -- 10.4.3 Quantitative Residual Analysis -- 10.5 Uncertainty in Nonlinear Regression -- 10.5.1 Nonlinear Least Squares -- 10.5.2 Orthogonal Distance Regression -- 10.5.3 Confidence and Prediction Bands in Nonlinear Regression -- 10.6 Using Monte Carlo for Evaluating Uncertainties in Curve Fitting -- 10.6.1 Monte Carlo Approach -- 10.6.2 Markov-Chain Monte Carlo Approach -- 10.7 Case Study: Contact Resistance -- 10.8 Drift and Predicting Future Values -- 10.8.1 Uncertainty During Use -- 10.8.2 Validating Drift Uncertainty -- 10.8.2.1 Type B Uncertainty -- 10.8.2.2 Type A Measurement Uncertainty -- 10.8.2.3 Drift Uncertainty -- 10.8.2.4 Expanded Uncertainty -- 10.9 Calibration Interval Analysis -- 10.10 Summary -- 10.11 Related Reading -- 10.12 Exercises -- References -- Chapter 11: Special Topics in Metrology -- 11.1 Introduction -- 11.2 Statistical Process Control (SPC) -- 11.2.1 Case Study: Battery Tester Uncertainty and Monitoring Via SPC -- 11.2.2 Discussion -- 11.3 Binary Measurement Systems (BMS) -- 11.3.1 BMS Overview -- 11.3.2 BMS Case Study Introduced -- 11.3.3 Evaluation of a BMS -- 11.3.3.1 Within-Operator Agreement -- 11.3.3.2 Between-Operator Agreement -- 11.3.3.3 Assessing BMS Correctness -- 11.3.4 Sample Sizes for a BMS Study -- 11.4 Measurement System Analysis with Destructive Testing -- 11.5 Sample Size and Allocation of Samples in Metrology Experiments -- 11.6 Summary of Sample Size Recommendations -- 11.7 Bayesian Analysis in Metrology -- 11.8 Related Reading -- 11.9 Exercises -- References -- Appendix A: Acronyms and Abbreviations -- Appendix B: Guidelines for Valid Measurements -- Related Reading: Electrical Measurements -- Related Reading: Time and Frequency Measurements -- Related Reading: Physical Measurements -- Related Reading: Temperature Measurement -- Related Reading: Radiation Related Reading: General Measurement and Instrumentation Techniques Metrology Electronic books Delker, Collin Verfasser aut Forrest, Eric Verfasser aut Martin, Nevin Verfasser aut Erscheint auch als Druck-Ausgabe Crowder, Stephen Introduction to Statistics in Metrology Cham : Springer International Publishing AG,c2020 9783030533281 |
spellingShingle | Crowder, Stephen Delker, Collin Forrest, Eric Martin, Nevin Introduction to Statistics in Metrology Intro -- Preface -- Contents -- About the Authors -- Chapter 1: Introduction -- 1.1 Measurement Uncertainty: Why Do We Care? -- 1.2 The History of Measurement -- 1.3 Measurement Science and Technological Development -- 1.4 Allegations of Deflated Footballs (''Deflategate'') -- 1.5 Fatality Rates During a Pandemic -- 1.6 Summary -- 1.7 Related Reading -- References -- Chapter 2: Basic Measurement Concepts -- 2.1 Introduction -- 2.2 Measurement Terminology -- 2.2.1 General Measurement Terminology -- 2.2.1.1 Measurand -- 2.2.1.2 True Value (True Value of a Quantity) -- 2.2.1.3 Measurement Accuracy -- 2.2.1.4 Measurement Precision -- 2.2.1.5 Resolution -- 2.2.1.6 Measurement Repeatability -- 2.2.1.7 Measurement Reproducibility -- 2.2.1.8 Independence of Measurements -- 2.2.2 Error Approach Terminology -- 2.2.2.1 Measurement Error -- 2.2.2.2 Systematic Measurement Error -- 2.2.2.3 Random Measurement Error -- 2.2.3 Uncertainty Approach Terminology -- 2.2.3.1 Measurement Uncertainty -- 2.2.3.2 Level of Confidence (Coverage Probability) -- 2.2.3.3 Coverage Interval -- 2.2.3.4 Measurement Model -- 2.2.4 Terminology of Calibration -- 2.2.4.1 Measuring and Test Equipment (M& -- TE) -- 2.2.4.2 Metrological Traceability -- 2.2.4.3 Calibration -- 2.2.4.4 Tolerance Test -- 2.2.4.5 Certification Uncertainty -- 2.3 Types of Measurements -- 2.3.1 Physical Measurements -- 2.3.2 Electrical Measurements -- 2.3.3 Other Types of Measurements -- 2.4 Sources of Uncertainty -- 2.4.1 Evaluating Sources of Uncertainty -- 2.5 Summary -- 2.6 Related Reading -- 2.7 Exercises -- References -- Chapter 3: The International System of Units, Traceability, and Calibration -- 3.1 History of the SI and Base Units -- 3.1.1 SI Constants -- 3.1.2 Time: Second (s) -- 3.1.3 Length: Meter (m) -- 3.1.4 Mass: Kilogram (kg) -- 3.1.5 Electric Current: Ampere (A) 3.1.6 Temperature: Kelvin (K) -- 3.1.7 Quantity of Substance: Mole (mol) -- 3.1.8 Luminous Intensity: Candela (cd) -- 3.2 Derived Units -- 3.3 Unit Realizations -- 3.3.1 Gauge Block Interferometer -- 3.3.2 Josephson Volt -- 3.4 Advancements in Unit Definitions -- 3.4.1 Kibble (Watt) Balance -- 3.4.2 Intrinsic Pressure Standard -- 3.5 Metrological Traceability -- 3.6 Measurement Standards -- 3.6.1 Certified Reference Materials -- 3.6.2 Check Standards -- 3.7 Calibration -- 3.7.1 The Calibration Cycle -- 3.7.2 Legal Aspects of Calibration -- 3.7.3 Technical Aspects of Calibration -- 3.7.4 Calibration Policies and Requirements -- 3.7.4.1 ISO 17025 -- 3.7.4.2 ANSI Z540.1 and ANSI/NCSL Z540.3:2006 -- 3.8 Summary -- 3.9 Related Reading -- 3.10 Exercises -- References -- Chapter 4: Introduction to Statistics and Probability -- 4.1 Introduction -- 4.2 Types of Data -- 4.3 Exploratory Data Analysis -- 4.3.1 Calculating Summary Statistics -- 4.3.1.1 Summary Statistics for Continuous Data -- 4.3.1.2 Summary Statistics for Discrete Data -- 4.3.2 Graphical Displays of Data -- 4.3.2.1 Graphical Displays for Continuous Data -- 4.3.2.2 Graphical Displays for Discrete Data -- 4.4 Probability Distributions -- 4.4.1 Identification of Probability Distributions -- 4.4.1.1 Continuous Distributions -- 4.4.1.2 Discrete Distributions -- 4.4.2 Estimating Distribution Parameters -- 4.4.3 Assessing Distributional Fit -- 4.5 Related Reading -- 4.6 Exercises -- References -- Chapter 5: Measurement Uncertainty in Decision Making -- 5.1 Introduction -- 5.2 Measurement Uncertainty and Risk -- 5.2.1 Measurement Uncertainty and Risk in Manufacturing -- 5.2.1.1 Test Uncertainty Ratio -- 5.2.1.2 Measurement Decisions -- 5.2.1.3 False Accept and False Reject Risks -- 5.2.1.4 Guardbanding -- 5.2.1.5 Risk with Biased Measurements -- 5.2.2 Measurement Uncertainty and Risk in Calibration 5.2.2.1 Decision Rules in Calibration -- 5.3 Summary -- 5.4 Related Reading -- 5.5 Exercises -- References -- Chapter 6: The Measurement Model and Uncertainty -- 6.1 Introduction -- 6.2 Uncertainty Analysis Framework -- 6.2.1 Standard Uncertainty -- 6.2.2 Type A Uncertainty Evaluation -- 6.2.3 Type B Uncertainty Evaluation -- 6.2.4 Combined Standard Uncertainty -- 6.2.5 Confidence Level and Expanded Uncertainty -- 6.3 Direct Measurements and the Basic Measurement Model -- 6.3.1 Case Study: Voltage Measurement -- 6.3.2 Discussion -- 6.4 Indirect Measurements and the Indirect Measurement Model -- 6.4.1 Case Study: Neutron Yield Measurement -- 6.4.2 Discussion -- 6.5 Related Reading -- 6.6 Exercises -- References -- Chapter 7: Analytical Methods for the Propagation of Uncertainties -- 7.1 Introduction -- 7.2 Mathematical Basis -- 7.3 The Simple Case: First-Order Terms with Uncorrelated Inputs -- 7.3.1 Measurement Examples -- 7.4 First-Order Terms with Correlated Inputs -- 7.4.1 Covariance, Correlation, and Effect on Uncertainty -- 7.4.2 Measurement Examples -- 7.5 Higher-Order Terms with Uncorrelated Inputs -- 7.5.1 Measurement Examples -- 7.6 Multiple Output Quantities -- 7.7 Limitations of the Analytical Approach -- 7.8 Related Reading -- 7.9 Exercises -- References -- Chapter 8: Monte Carlo Methods for the Propagation of Uncertainties -- 8.1 Introduction to Monte Carlo Methods -- 8.1.1 Random Sampling Techniques and Random Number Generation -- 8.1.1.1 Sampling from Normal and Non-Normal Distributions -- 8.1.1.2 Generating Correlated Random Samples (Normal Distribution) -- 8.1.2 Generation of Probability Density Functions Using Random Data -- 8.1.3 Computational Approaches -- 8.1.3.1 Linear Congruential Generator -- 8.1.3.2 Better PRNG Algorithms -- 8.2 Standard Monte Carlo for Uncertainty Propagation -- 8.2.1 Monte Carlo Techniques 8.2.1.1 Case Study: Calculating Density -- 8.2.1.2 Sensitivity Coefficients -- 8.2.1.3 Convergence Plots and Adaptive Sampling -- 8.3 Comparison to the GUM -- 8.3.1 Quantitative GUM Validity Test -- 8.4 Monte Carlo Case Studies -- 8.4.1 Case Study: Neutron Yield Measurement -- 8.4.2 Case Study: RC Circuit -- 8.5 Summary -- 8.6 Related Reading -- 8.7 Exercises -- References -- Chapter 9: Design of Experiments in Metrology -- 9.1 Introduction -- 9.2 Factorial Experiments in Metrology -- 9.2.1 Defining the Measurand and Objective of the Experiment -- 9.2.2 Selecting Factors to Incorporate in the Experiment -- 9.2.3 Selecting Factor Levels and Design Pattern -- 9.2.4 Analysis of CMM Errors via Design of Experiments (24 Full Factorial) -- 9.2.5 Finite Element Method (FEM) Uncertainty Analysis via Design of Experiments (27-3 Fractional Factorial) -- 9.2.6 Summary of Factorial DOEx Method -- 9.3 ANOVA Models in Metrology -- 9.3.1 Random Effects Models -- 9.3.2 Mixed Effects Models -- 9.3.3 Underlying ANOVA Assumptions -- 9.3.4 Gauge R& -- R Study (Random Effects Model) -- 9.3.5 Voltage Standard Uncertainty Analysis (Mixed Effects Model) -- 9.3.6 Summary of ANOVA Method -- 9.4 Related Reading -- 9.5 Exercises -- References -- Chapter 10: Determining Uncertainties in Fitted Curves -- 10.1 The Purpose of Fitting Curves to Experimental Data -- 10.1.1 Resistance vs. Temperature Data -- 10.1.2 Considerations When Fitting Models to Data -- 10.2 Methods for Fitting Curves to Experimental Data -- 10.2.1 Linear Least Squares -- 10.2.2 Uncertainty in Fitting Parameters -- 10.2.3 Weighted Least Squares: Non-constant u(y) -- 10.2.4 Weighted Least Squares: Uncertainty in Both x and y -- 10.3 Uncertainty of a Regression Line -- 10.3.1 Uncertainty of Fitting Parameters -- 10.3.2 Confidence Bands -- 10.3.3 Prediction Bands -- 10.4 How Good Is the Model? 10.4.1 Residual Analysis -- 10.4.2 Slope Test -- 10.4.3 Quantitative Residual Analysis -- 10.5 Uncertainty in Nonlinear Regression -- 10.5.1 Nonlinear Least Squares -- 10.5.2 Orthogonal Distance Regression -- 10.5.3 Confidence and Prediction Bands in Nonlinear Regression -- 10.6 Using Monte Carlo for Evaluating Uncertainties in Curve Fitting -- 10.6.1 Monte Carlo Approach -- 10.6.2 Markov-Chain Monte Carlo Approach -- 10.7 Case Study: Contact Resistance -- 10.8 Drift and Predicting Future Values -- 10.8.1 Uncertainty During Use -- 10.8.2 Validating Drift Uncertainty -- 10.8.2.1 Type B Uncertainty -- 10.8.2.2 Type A Measurement Uncertainty -- 10.8.2.3 Drift Uncertainty -- 10.8.2.4 Expanded Uncertainty -- 10.9 Calibration Interval Analysis -- 10.10 Summary -- 10.11 Related Reading -- 10.12 Exercises -- References -- Chapter 11: Special Topics in Metrology -- 11.1 Introduction -- 11.2 Statistical Process Control (SPC) -- 11.2.1 Case Study: Battery Tester Uncertainty and Monitoring Via SPC -- 11.2.2 Discussion -- 11.3 Binary Measurement Systems (BMS) -- 11.3.1 BMS Overview -- 11.3.2 BMS Case Study Introduced -- 11.3.3 Evaluation of a BMS -- 11.3.3.1 Within-Operator Agreement -- 11.3.3.2 Between-Operator Agreement -- 11.3.3.3 Assessing BMS Correctness -- 11.3.4 Sample Sizes for a BMS Study -- 11.4 Measurement System Analysis with Destructive Testing -- 11.5 Sample Size and Allocation of Samples in Metrology Experiments -- 11.6 Summary of Sample Size Recommendations -- 11.7 Bayesian Analysis in Metrology -- 11.8 Related Reading -- 11.9 Exercises -- References -- Appendix A: Acronyms and Abbreviations -- Appendix B: Guidelines for Valid Measurements -- Related Reading: Electrical Measurements -- Related Reading: Time and Frequency Measurements -- Related Reading: Physical Measurements -- Related Reading: Temperature Measurement -- Related Reading: Radiation Related Reading: General Measurement and Instrumentation Techniques Metrology |
title | Introduction to Statistics in Metrology |
title_auth | Introduction to Statistics in Metrology |
title_exact_search | Introduction to Statistics in Metrology |
title_exact_search_txtP | Introduction to Statistics in Metrology |
title_full | Introduction to Statistics in Metrology |
title_fullStr | Introduction to Statistics in Metrology |
title_full_unstemmed | Introduction to Statistics in Metrology |
title_short | Introduction to Statistics in Metrology |
title_sort | introduction to statistics in metrology |
topic | Metrology |
topic_facet | Metrology |
work_keys_str_mv | AT crowderstephen introductiontostatisticsinmetrology AT delkercollin introductiontostatisticsinmetrology AT forresteric introductiontostatisticsinmetrology AT martinnevin introductiontostatisticsinmetrology |