Heterogeneous catalysis for sustainable energy:
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2022]
|
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34485-7/ Inhaltsverzeichnis |
Beschreibung: | xiv, 568 Seiten Illustrationen, Diagramme |
ISBN: | 9783527344857 |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048321586 | ||
003 | DE-604 | ||
005 | 20240617 | ||
007 | t| | ||
008 | 220711s2022 gw a||| |||| 00||| eng d | ||
015 | |a 21,N47 |2 dnb | ||
016 | 7 | |a 1246104873 |2 DE-101 | |
020 | |a 9783527344857 |c hbk. |9 978-3-527-34485-7 | ||
035 | |a (OCoLC)1339072003 | ||
035 | |a (DE-599)DNB1246104873 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-83 |a DE-703 |a DE-11 | ||
084 | |a VN 9200 |0 (DE-625)147637:253 |2 rvk | ||
084 | |a VK 5570 |0 (DE-625)147405:253 |2 rvk | ||
245 | 1 | 0 | |a Heterogeneous catalysis for sustainable energy |c edited by Landong Li and Justin S. J. Hargreaves |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a xiv, 568 Seiten |b Illustrationen, Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Heterogene Katalyse |0 (DE-588)4123377-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nachhaltigkeit |0 (DE-588)4326464-5 |2 gnd |9 rswk-swf |
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Heterogene Katalyse |0 (DE-588)4123377-3 |D s |
689 | 0 | 1 | |a Nachhaltigkeit |0 (DE-588)4326464-5 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Li, Landong |d 1980- |0 (DE-588)1266521828 |4 edt | |
700 | 1 | |a Hargreaves, Justin S. J. |0 (DE-588)113739434X |4 edt | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-81589-0 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-81591-3 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, oBook |z 978-3-527-81590-6 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34485-7/ |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033700915&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033700915 |
Datensatz im Suchindex
_version_ | 1815695527082196992 |
---|---|
adam_text |
CONTENTS
PREFACE
XIII
PART
I
HYDROGEN
ECONOMY
1
1
CATALYTIC
HYDROGEN
PRODUCTION
3
XINGYUAN
GAO
AND
SIBUDJING
KAWI
1.1
INTRODUCTION
3
1.1.1
THERMOCATALYTIC
DECOMPOSITION
OF
METHANE
3
1.1.1.1
METAL
CATALYSTS
4
1.1.1.2
CARBON
CATALYSTS
5
1.1.2
PARTIAL
OXIDATION
OF
METHANE
5
1.1.3
CATALYTIC
REFORMING
OF
METHANE
9
1.1.3.1
STEAM
REFORMING
OF
METHANE
(SRM)
9
1.1.3.2
OXIDATIVE
STEAM
REFORMING
OF
METHANE
(OSRM)
13
1.1.3.3
CO
2
/DRY
REFORMING
OF
METHANE
14
1.1.4
THERMOCATALYTIC
CONVERSION
OF
OTHER
FOSSIL
FUELS
21
1.2
CONCLUSIONS
AND
PROSPECTS
25
REFERENCES
25
2
CATALYTIC
REFORMING
OF
OXYGEN-CONTAINING
CHEMICALS
33
WEI
LUO,
SONG
SONG,
TONG
DING,
YE
TIAN,
AND
XINGANG
LI
2.1
INTRODUCTION
33
2.2
CATALYTIC
HYDROGEN
PRODUCTION
FROM
METHANOL
33
2.2.1
CATALYTIC
HYDROGEN
PRODUCTION
FROM
DECOMPOSITION
OF
METHANOL
34
2.2.2
CATALYTIC
HYDROGEN
PRODUCTION
FROM
PARTIAL
OXIDATION
OF
METHANOL
35
2.2.3
CATALYTIC
HYDROGEN
PRODUCTION
FROM
STEAM
REFORMING
OF
METHANOL
36
2.2.4
CATALYTIC
HYDROGEN
PRODUCTION
FROM
COMBINED
REFORMING
OF
METHANOL
37
2.2.5
CATALYTIC
HYDROGEN
PRODUCTION
FROM
AQUEOUS-PHASE
REFORMING
OF
METHANOL
37
2.3
CATALYTIC
HYDROGEN
PRODUCTION
FROM
ETHANOL
38
2.3.1
CATALYTIC
HYDROGEN
PRODUCTION
FROM
STEAM
REFORMING
OF
ETHANOL
39
VI
CONTENTS
2.3.2
CATALYTIC
HYDROGEN
PRODUCTION
FROM
AQUEOUS-PHASE
REFORMING
OF
ETHANOL
41
2.4
2.4.1
CATALYTIC
HYDROGEN
PRODUCTION
FROM
DIMETHYL
ETHER
42
CATALYTIC
HYDROGEN
PRODUCTION
FROM
PARTIAL
OXIDATION
OF
DIMETHYL
ETHER
42
2.4.2
CATALYTIC
HYDROGEN
PRODUCTION
FROM
AUTOTHERMAL
REFORMING
OF
DIMETHYL
ETHER
43
2.4.3
CATALYTIC
HYDROGEN
PRODUCTION
FROM
STEAM
REFORMING
OF
DIMETHYL
ETHER
43
2.4.3.1
2.4.3.2
2.5
2.5.1
2.5.1.1
2.5.1.2
2.5.2
MIXED
BIFUNCTIONAL
CATALYSTS
44
SUPPORTED
BIFUNCTIONAL
CATALYSTS
44
CATALYTIC
HYDROGEN
PRODUCTION
FROM
GLYCEROL
46
CATALYTIC
HYDROGEN
PRODUCTION
FROM
STEAM
REFORMING
OF
GLYCEROL
46
NOBLE
METAL
CATALYSTS
46
NON-NOBLE
METAL
CATALYSTS
47
CATALYTIC
HYDROGEN
PRODUCTION
FROM
AQUEOUS-PHASE
REFORMING
OF
GLYCEROL
48
2.6
2.6.1
CATALYTIC
HYDROGEN
PRODUCTION
FROM
ETHYLENE
GLYCOL
49
CATALYTIC
HYDROGEN
PRODUCTION
FROM
STEAM
REFORMING
OF
ETHYLENE
GLYCOL
49
2.6.2
CATALYTIC
HYDROGEN
PRODUCTION
FROM
AQUEOUS-PHASE
REFORMING
OF
ETHYLENE
GLYCOL
50
2.7
2.8
CATALYTIC
HYDROGEN
PRODUCTION
FROM
SORBITOL
51
CONCLUSIONS
AND
FUTURE
OUTLOOK
52
REFERENCES
52
3
ADVANCES
IN
FISCHER-TROPSCH
SYNTHESIS
FOR
THE
PRODUCTION
OF
FUELS
AND
CHEMICALS
57
LIANGSHU
ZHONG
3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.1.3
3.4.2
3.4.2.1
3.4.2.2
3.4.3
INTRODUCTION
57
CATALYST
DEVELOPMENT
FOR
FISCHER-TROPSCH
SYNTHESIS
59
FE-BASED
FTS
59
CO-BASED
FTS
62
SELECTIVITY
CONTROL
FOR
THE
PRODUCTION
OF
HYDROCARBON
LIQUID
FUELS
64
MODIFIED
FTS
CATALYSTS
FOR
SELECTIVITY
CONTROL
OF
LIQUID
FUELS
65
BIFUNCTIONAL
CATALYSTS
FOR
SELECTIVITY
CONTROL
OF
LIQUID
FUELS
65
SELECTIVITY
CONTROL
FOR
PRODUCTION
OF
CHEMICALS
68
SYNGAS
TO
OLEFINS
68
FE-BASED
FTO
68
CO-BASED
FTO
69
BIFUNCTIONAL
CATALYSTS
FOR
SYNGAS
TO
OLEFINS
72
SYNGAS
TO
AROMATICS
74
STA
VIA
OLEFINS
AS
INTERMEDIATES
(SOA)
74
STA
VIA
METHANOL/DIMETHYL
ETHER
AS
INTERMEDIATES
(SMA)
75
SYNGAS
TO
C2+
OXYGENATES
76
CONTENTS
VII
3.4.3.1
3.4.3.2
3.5
CO
2
C-CONTAINING
CO-BASED
CATALYST
FOR
SYNGAS
TO
C2+
OXYGENATES
78
CU-MODIFIED
FTS
CATALYSTS
80
SUMMARY
AND
OUTLOOK
82
REFERENCES
84
PART
II
METHANE
ACTIVATION
93
4
STEAM
AND
DRY
REFORMING
OF
METHANE
95
JOSE
LUIS
RICO
4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1
4.2.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.5
INTRODUCTION
95
STEAM
REFORMING
OF
METHANE
95
DRY
REFORMING
OF
METHANE
96
THERMODYNAMIC
ANALYSIS
OF
THE
SRM
AND
DRM
REACTIONS
97
HETEROGENEOUS
CATALYSTS
FOR
THE
SRM
97
NI-BASED
AND
OTHER
CATALYSTS
98
THEORETICAL
STUDIES
ON
THE
SRM
104
HETEROGENEOUS
CATALYSTS
FOR
THE
DRM
105
NOBLE
METAL
CATALYSTS
105
NI-BASED
CATALYSTS
106
CO-BASED
AND
OTHER
CATALYSTS
114
THEORETICAL
STUDIES
ON
THE
DRM
118
COMMENTS ON
BOTH
SRM
AND
DRM
PROCESSES
118
FINAL
REMARKS
119
REFERENCES
119
5
METHANE
ACTIVATION
OVER
ZEOLITES
129
MEERA
A.
SHAH
AND
RUSSELL
A.
TAYLOR
5.1
5.1.1
5.1.2
5.2
5.3
5.4
5.4.1
5.4.2
5.4.2.1
INTRODUCTION
129
THE
DIRECT
CONVERSION
OF
METHANE
130
INTRODUCTION
TO
ZEOLITES
131
OXIDATIVE
COUPLING
OF
METHANE
OVER
ZEOLITE
CATALYSTS
133
METHANE
DEHYDROAROMATIZATION
(MDA)
135
METAL-MODIFIED
ZEOLITES
FOR
DMTM
144
FE-MODIFIED
ZEOLITES
146
CU-MODIFIED ZEOLITES
149
ACTIVE
SITES
FOR
METHANE
PARTIAL
OXIDATION
IN
COPPER-MODIFIED
ZEOLITES
149
5.4.2.2
REACTION
MECHANISM
FOR
THE
PARTIAL
OXIDATION
OF
METHANE
OVER
COPPER-MODIFIED
ZEOLITES
151
5.4.2.3
ALTERNATIVES
TO
STEPWISE
METHANOL
PRODUCTION:
ISOTHERMAL
AND
DIRECT
CATALYTIC
CONVERSION
OF
METHANE
TO
METHANOL
OVER
COPPER-MODIFIED
ZEOLITES
153
5.4.2.4
EFFECT
OF
FRAMEWORK
TOPOLOGY
AND
COMPOSITION
ON
METHANE
PARTIAL
OXIDATION
OVER
COPPER-MODIFIED
ZEOLITES
154
VIII
CONTENTS
5.4.3
5.4.3.1
5.4.3.2
5.4.3.3
5.4.3.4
ZN-MODIFIED
ZEOLITES
156
MECHANISM OF
C-H
ACTIVATION
IN
ZINC-EXCHANGED
ZEOLITES
157
ZINC
OXIDE
CLUSTERS
IN
ZEOLITES
159
THE
ROLE
OF
BRONSTED
ACID
SITES
IN
C-H
ACTIVATION
160
REACTIVITY
OF
METHANE
WITH
SMALL
MOLECULES
ON
ZINC-MODIFIED
ZEOLITES
161
5.4.4
5.5
OTHER
D-BLOCK
METALS
IN
ZEOLITES
161
OUTLOOK
164
REFERENCES
165
6
THE
SELECTIVE
OXIDATION
OF
METHANE
TO
OXYGENATES
USING
HETEROGENEOUS
CATALYSTS
183
JAMES
H.
CARTER,
NICHOLAS
F.
DUMMER,
YING
KIT
CHOW,
CHRISTOPHER
WILLIAMS,
ALI
NASRALLAH,
DAVID
J.
WILLOCK,
GRAHAM
J.
HUTCHINGS,
AND
STUART
H.
TAYLOR
6.1
6.2
6.2.1
6.2.2
6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.4
INTRODUCTION
AND
HISTORICAL
CONTEXT
183
LIQUID-PHASE
REACTIONS
185
ZEOLITE
CATALYSTS
185
NOBLE
METAL
CATALYSTS
187
GAS-PHASE
REACTIONS
189
NON-ZEOLITE
CATALYSTS
190
ZEOLITE
CATALYSTS
192
COPPER
AS
THE
ACTIVE
COMPONENT
192
IRON
AS
THE
ACTIVE
COMPONENT
194
CONCLUSIONS
AND
OUTLOOK
195
REFERENCES
196
PART
III
ALKANE
ACTIVATION
203
7
CATALYTIC
CRACKING
OF
HYDROCARBONS
TO
LIGHT
OLEFINS
205
XIA
XIAO
AND
ZHEN
ZHAO
7.1
7.2
7.2.1
7.2.2
7.2.3
7.3
7.3.1
7.3.2
7.3.2.1
7.3.2.2
7.3.2.3
7.3.3
7.3.4
BACKGROUND
INTRODUCTION
205
REACTION
MECHANISM
OF
CATALYTIC
CRACKING
OVER
ZEOLITES
206
MONOMOLECULAR
OR
A-PROTOLYTIC
CRACKING
MECHANISM
206
BIMOLECULAR
CRACKING
MECHANISM
208
MONOMOLECULAR
AND
BIMOLECULAR
CRACKING
MECHANISM
212
DEVELOPMENT
OF
ZEOLITE
CATALYSTS
214
ZEOLITES
WITH
DIFFERENT
FRAMEWORK
STRUCTURES
214
ADJUSTMENT
OF
ACID
PROPERTIES
OF
ZSM-5
ZEOLITE
220
EFFECT
OF
SI/AL
RATIO
OF
ZSM-5
ZEOLITE
221
TUNING OF
AL
SITING
AND
DISTRIBUTION
IN
ZSM-5
ZEOLITE
226
MODIFICATION
OF
ZSM-5
ZEOLITES
WITH
DIFFERENT
ELEMENTS
227
ALKALINE
METAL
AND
ALKALI
EARTH
METAL-MODIFIED
ZSM-5
228
TRANSITION
METAL-MODIFIED
ZSM-5
229
CONTENTS
IX
7.3.5
RARE
EARTH
ELEMENT-MODIFIED
ZSM-5
230
7.3.6
PHOSPHORUS-MODIFIED
ZSM-5
232
7.4
NANO-ZSM-5
ZEOLITE
235
7.5
HIERARCHICAL
ZSM-5
ZEOLITES
242
7.5.1
MESOPOROUS/MICROPOROUS
ZSM-5
ZEOLITES
242
7.5.1.1
HARD
TEMPLATE
METHOD
242
7.5.1.2
POST-TREATMENT
METHOD
243
7.5.1.3
SOFT
TEMPLATE
METHOD
243
7.5.1.4
OTHER
METHODS
247
7.5.2
MACROPOROUS/MESOPOROUS/MICROPOROUS
ZSM-5
249
7.5.3
COMPOSITE
ZEOLITES
254
7.6
OUTLOOK
258
REFERENCES
260
8
CATALYTIC
DEHYDROGENATION
OF
LIGHT
ALKANES
273
AN-HUI
LU
8.1
INTRODUCTION
273
8.2
DIRECT
DEHYDROGENATION
274
8.2.1
COMMERCIAL
DEHYDROGENATION
PROCESSES
274
8.2.1.1
CATOFIN
PROCESS
275
8.2.1.2
OLEFLEX
PROCESS
275
8.2.1.3
ADHO
TECHNOLOGY
277
8.2.1.4
OTHER
PROCESSES
277
8.2.2
DIRECT
ALKANE
DEHYDROGENATION
CATALYSTS
278
8.2.2.1
CRO,-BASED
CATALYSTS
278
8.2.2.2
PT-BASED
CATALYSTS
281
8.3
OXIDATIVE
DEHYDROGENATION
285
8.3.1
TRANSITION
METAL
OXIDE
AND
ALKALINE-EARTH
METAL
OXYCHLORIDE
CATALYSTS
285
8.3.1.1
VANADIUM
OXIDE-BASED
CATALYSTS
285
8.3.1.2
MOVTENBO,
CATALYSTS
287
8.3.1.3
NICKEL
OXIDE-BASED
CATALYSTS
288
8.3.1.4
ALKALINE-EARTH
METAL
OXYCHLORIDE
CATALYSTS
289
8.3.1.5
CHEMICAL
LOOPING
ODH
291
8.3.2
BORON-BASED
CATALYSTS
292
8.3.2.1
DEVELOPMENT
OF
BORON-BASED
CATALYSTS
292
8.3.2.2
ACTIVE
SITES
OF
BORON-BASED
CATALYSTS
297
8.3.2.3
POSSIBLE
REACTION
PATHWAY
301
8.3.3
CARBON-BASED
CATALYSTS
307
8.3.3.1
DEVELOPMENT
OF
CARBON-BASED
CATALYSTS
307
8.3.3.2
IDENTIFICATION
OF
ACTIVE
SITES
308
8.3.3.3
SELECTIVITY
CONTROL
OF
OLEFINS
310
8.4
SUMMARY
AND
OUTLOOK
313
REFERENCES
315
X
CONTENTS
PART
IV
ZEOLITE
CATALYSIS
321
9
ZEOLITES
FOR
SUSTAINABLE
CHEMICAL
TRANSFORMATIONS
323
LUKE
HARVEY,
MATTHEW
DREWERY,
ERIC
KENNEDY,
AND
MICHAEL
STOCKENHUBER
9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.4.1
9.1.5
9.1.5.1
9.2
INTRODUCTION
TO
ZEOLITES
AND
ZEOLITE
CHEMISTRY
323
ZEOLITE
CHEMISTRY
323
ZEOLITES
AS
CATALYSTS
324
SIZE
DISCRIMINATION:
MOLECULAR
SIEVES
325
ZEOLITES
AS
SUPPORTS
FOR
METAL
CATALYSTS
326
METHODS
OF
METAL
DEPOSITION
326
METALS
IN
THE
ZEOLITE
FRAMEWORK
329
METHODS
OF
PREPARATION
329
THE
NATURE
OF
ACTIVE
SITES
AND
DEACTIVATION
OF
ZEOLITE-BASED
CATALYSTS
332
9.2.1
9.2.1.1
9.2.1.2
9.2.1.3
9.3
9.3.1
9.3.1.1
9.3.1.2
9.3.1.3
9.3.2
9.3.2.1
ACTIVE
SITES
IN
ZEOLITE
CATALYSIS
332
ACID
SITES
333
BASIC
SITES
335
REDOX
SITES
IN
ZEOLITE
CATALYSTS
337
CAUSES
OF
DEACTIVATION
IN
ZEOLITE
CATALYSTS
338
POISONING
338
DEACTIVATION
THROUGH
CARBONACEOUS
DEPOSITS
(COKING)
338
INHIBITION
OF
CATALYST
ACTIVITY
DUE
TO
WATER
339
POISONING
OF
PALLADIUM
COMBUSTION
CATALYSTS
339
PARTICLE
SINTERING
AND
AGGLOMERATION
342
PARTICLE
AGGLOMERATION
IN
VENTILATION
AIR
METHANE
OXIDATION
CATALYSTS
342
9.4
FUTURE
DIRECTIONS
FOR ZEOLITE
CATALYSIS
343
REFERENCES
343
10
METHANOL
TO
HYDROCARBONS
351
WEILI
DAI,
LIU
YANG,
GUANGJUN
WU,
NAIJIA
GUAN,
AND
LANDONG
LI
10.1
10.2
10.2.1
BACKGROUND
INTRODUCTION
351
THE
DIRECT
MECHANISM
FOR
MTH
REACTION
352
THE
DEVELOPMENT
AND
MILESTONES
OF
THE
DIRECT
MECHANISM
352
10.2.2
10.3
10.3.1
10.3.2
10.3.3
10.4
10.5
10.6
THE
FIRST
C
-
C
BOND
FORMATION
353
THE
INDIRECT
REACTION
MECHANISM
FOR
MTH
REACTION
359
HYDROCARBON
POOL
MECHANISM
359
DUAL-CYCLE
MECHANISM
364
THE
CONNECTION
BETWEEN
THE
DUAL
CYCLES
367
BRIDGING
THE
DIRECT
AND
INDIRECT
MECHANISMS
370
ZEOLITE
CATALYSTS
FOR
MTH
CONVERSION
375
SUMMARY
AND
OUTLOOK
379
REFERENCES
380
CONTENTS
XI
PART
V
CARBON
DIOXIDE
AS
C1
BUILDING
BLOCK
391
11
OVERVIEW
ON
CO2
EMISSION
AND
CAPTURE
393
WANLIN
GAO
AND
QIANG
WANG
11.1
INTRODUCTION
393
11.2
CO
2
EMISSION
AND
RELATED
PROBLEMS
394
11.3
CO
2
CAPTURE
TECHNOLOGY
395
11.3.1
PRECOMBUSTION
CO
2
CAPTURE
396
11.3.1.1
INTERMEDIATE-TEMPERATURE
ADSORBENTS
397
11.3.1.2
HIGH-TEMPERATURE
ADSORBENTS
400
11.3.2
POSTCOMBUSTION
CO
2
CAPTURE
405
11.3.2.1
AMINE-BASED
SOLVENTS
406
11.3.2.2
AMINE-FUNCTIONALIZED
ADSORBENTS
407
11.3.2.3
MOF-BASED
ADSORBENTS
408
11.3.2.4
ZEOLITE
ADSORBENTS
409
11.3.2.5
CARBON-BASED
ADSORBENT
409
11.3.3
OXY-FUEL
COMBUSTION
CO2
CAPTURE
410
11.3.4
CHEMICAL
LOOPING
COMBUSTION
411
11.3.5
DIRECT
AIR
CAPTURE
OF
CO
2
413
11.3.6
CARBON
CAPTURE,
STORAGE,
AND
UTILIZATION
414
11.4
CONCLUSIONS
415
ACKNOWLEDGMENTS
416
REFERENCES
416
12
CO
2
REDUCTION
TO
FUELS
AND
CHEMICALS
425
JIAN
SUN
AND
LISHENG
GUO
12.1
INTRODUCTION
425
12.2
METHANATION
OF
CARBON
DIOXIDE
427
12.3
SYNTHESIS
OF
C
2+
HYDROCARBONS
430
12.3.1
ALKENES
430
12.3.2
LIQUEFIED
PETROLEUM
GAS
(LPG)
434
12.3.3
LIQUID
FUELS
434
12.3.4
AROMATICS
440
12.3.5
SYNTHESIS
OF
ALCOHOL
442
12.3.6
SYNTHESIS
OF
OTHER
VALUABLE
CHEMICALS
447
12.4
PHOTOCATALYTIC
AND
ELECTROCATALYTIC
CONVERSION
OF
CO
2
INTO
VALUABLE
FUELS
OR
CHEMICALS
449
REFERENCES
450
PART
VI
BIOMASS
CONVERSION
459
13
LIPIDS
TO
FUELS
AND
CHEMICALS
461
BOLONG
LI,
ARIF
ALI,
SHUTAO
LEI,
AND
CHEN
ZHAO
13.1
INTRODUCTION
461
XII
I
CONTENTS
INDEX
559
13.2
13.2.1
13.2.2
13.3
13.4
13.4.1
13.4.2
13.5
13.5.1
13.5.2
13.5.3
13.6
LIPIDS
TO
DIESEL-RANGE
HYDROCARBONS
462
DEOXYGENATION
OF
LIPIDS
OVER
SUPPORTED
METAL
SULFIDE
CATALYSTS
463
DEOXYGENATION
OF
LIPIDS
OVER
SULFUR-FREE
METAL
CATALYSTS
465
LIPIDS
TO
JET
FUEL
HYDROCARBONS
474
LIPIDS
TO
ALKENES
478
LIPIDS
TO
ALKENES
OVER
HOMOGENEOUS
CATALYSTS
479
LIPIDS
TO
ALKENES
OVER
HETEROGENEOUS
CATALYSTS
486
LIPIDS
TO
FATTY
ALCOHOLS
488
HYDROGENATION
OF
OILS
488
HYDROGENATION
OF
ESTERS
OR
METHYL
ESTERS
489
HYDROGENATION
OF
FATTY
ACIDS
493
SUMMARY
494
REFERENCES
496
14
LIGNIN
UPGRADING
507
YONG
GUO
AND
YANQIN
WANG
14.1
14.1.1
14.2
14.2.1
14.2.2
14.2.3
14.2.4
14.2.5
14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.4
14.5
INTRODUCTION
507
STRUCTURE
OF
LIGNIN
508
CATALYTIC
DEPOLYMERIZATION
513
ACID
CATALYTIC
DEPOLYMERIZATION
513
ALKALINE
CATALYTIC
DEPOLYMERIZATION
518
REDUCTIVE
CATALYTIC
DEPOLYMERIZATION
521
OXIDATIVE
CATALYTIC
DEPOLYMERIZATION
527
OTHER
CATALYTIC
DEPOLYMERIZATION
530
UPGRADING
OF
MONOMERS
TO
FUELS
AND
CHEMICALS
532
UPGRADING
LIGNIN
MONOMERS
TO
CYCLOALKANES
532
UPGRADING
LIGNIN
MONOMERS
TO
AROMATIC
HYDROCARBONS
537
UPGRADING
LIGNIN
MONOMERS
TO
PHENOLS
542
UPGRADING
LIGNIN
MONOMERS
TO
OTHER
CHEMICALS
546
DIRECT
CONVERSION
OF
LIGNIN
TO
FUELS
AND
CHEMICALS
547
CONCLUSIONS
AND
PERSPECTIVE
549
REFERENCES
551 |
adam_txt |
CONTENTS
PREFACE
XIII
PART
I
HYDROGEN
ECONOMY
1
1
CATALYTIC
HYDROGEN
PRODUCTION
3
XINGYUAN
GAO
AND
SIBUDJING
KAWI
1.1
INTRODUCTION
3
1.1.1
THERMOCATALYTIC
DECOMPOSITION
OF
METHANE
3
1.1.1.1
METAL
CATALYSTS
4
1.1.1.2
CARBON
CATALYSTS
5
1.1.2
PARTIAL
OXIDATION
OF
METHANE
5
1.1.3
CATALYTIC
REFORMING
OF
METHANE
9
1.1.3.1
STEAM
REFORMING
OF
METHANE
(SRM)
9
1.1.3.2
OXIDATIVE
STEAM
REFORMING
OF
METHANE
(OSRM)
13
1.1.3.3
CO
2
/DRY
REFORMING
OF
METHANE
14
1.1.4
THERMOCATALYTIC
CONVERSION
OF
OTHER
FOSSIL
FUELS
21
1.2
CONCLUSIONS
AND
PROSPECTS
25
REFERENCES
25
2
CATALYTIC
REFORMING
OF
OXYGEN-CONTAINING
CHEMICALS
33
WEI
LUO,
SONG
SONG,
TONG
DING,
YE
TIAN,
AND
XINGANG
LI
2.1
INTRODUCTION
33
2.2
CATALYTIC
HYDROGEN
PRODUCTION
FROM
METHANOL
33
2.2.1
CATALYTIC
HYDROGEN
PRODUCTION
FROM
DECOMPOSITION
OF
METHANOL
34
2.2.2
CATALYTIC
HYDROGEN
PRODUCTION
FROM
PARTIAL
OXIDATION
OF
METHANOL
35
2.2.3
CATALYTIC
HYDROGEN
PRODUCTION
FROM
STEAM
REFORMING
OF
METHANOL
36
2.2.4
CATALYTIC
HYDROGEN
PRODUCTION
FROM
COMBINED
REFORMING
OF
METHANOL
37
2.2.5
CATALYTIC
HYDROGEN
PRODUCTION
FROM
AQUEOUS-PHASE
REFORMING
OF
METHANOL
37
2.3
CATALYTIC
HYDROGEN
PRODUCTION
FROM
ETHANOL
38
2.3.1
CATALYTIC
HYDROGEN
PRODUCTION
FROM
STEAM
REFORMING
OF
ETHANOL
39
VI
CONTENTS
2.3.2
CATALYTIC
HYDROGEN
PRODUCTION
FROM
AQUEOUS-PHASE
REFORMING
OF
ETHANOL
41
2.4
2.4.1
CATALYTIC
HYDROGEN
PRODUCTION
FROM
DIMETHYL
ETHER
42
CATALYTIC
HYDROGEN
PRODUCTION
FROM
PARTIAL
OXIDATION
OF
DIMETHYL
ETHER
42
2.4.2
CATALYTIC
HYDROGEN
PRODUCTION
FROM
AUTOTHERMAL
REFORMING
OF
DIMETHYL
ETHER
43
2.4.3
CATALYTIC
HYDROGEN
PRODUCTION
FROM
STEAM
REFORMING
OF
DIMETHYL
ETHER
43
2.4.3.1
2.4.3.2
2.5
2.5.1
2.5.1.1
2.5.1.2
2.5.2
MIXED
BIFUNCTIONAL
CATALYSTS
44
SUPPORTED
BIFUNCTIONAL
CATALYSTS
44
CATALYTIC
HYDROGEN
PRODUCTION
FROM
GLYCEROL
46
CATALYTIC
HYDROGEN
PRODUCTION
FROM
STEAM
REFORMING
OF
GLYCEROL
46
NOBLE
METAL
CATALYSTS
46
NON-NOBLE
METAL
CATALYSTS
47
CATALYTIC
HYDROGEN
PRODUCTION
FROM
AQUEOUS-PHASE
REFORMING
OF
GLYCEROL
48
2.6
2.6.1
CATALYTIC
HYDROGEN
PRODUCTION
FROM
ETHYLENE
GLYCOL
49
CATALYTIC
HYDROGEN
PRODUCTION
FROM
STEAM
REFORMING
OF
ETHYLENE
GLYCOL
49
2.6.2
CATALYTIC
HYDROGEN
PRODUCTION
FROM
AQUEOUS-PHASE
REFORMING
OF
ETHYLENE
GLYCOL
50
2.7
2.8
CATALYTIC
HYDROGEN
PRODUCTION
FROM
SORBITOL
51
CONCLUSIONS
AND
FUTURE
OUTLOOK
52
REFERENCES
52
3
ADVANCES
IN
FISCHER-TROPSCH
SYNTHESIS
FOR
THE
PRODUCTION
OF
FUELS
AND
CHEMICALS
57
LIANGSHU
ZHONG
3.1
3.2
3.2.1
3.2.2
3.3
3.3.1
3.3.2
3.4
3.4.1
3.4.1.1
3.4.1.2
3.4.1.3
3.4.2
3.4.2.1
3.4.2.2
3.4.3
INTRODUCTION
57
CATALYST
DEVELOPMENT
FOR
FISCHER-TROPSCH
SYNTHESIS
59
FE-BASED
FTS
59
CO-BASED
FTS
62
SELECTIVITY
CONTROL
FOR
THE
PRODUCTION
OF
HYDROCARBON
LIQUID
FUELS
64
MODIFIED
FTS
CATALYSTS
FOR
SELECTIVITY
CONTROL
OF
LIQUID
FUELS
65
BIFUNCTIONAL
CATALYSTS
FOR
SELECTIVITY
CONTROL
OF
LIQUID
FUELS
65
SELECTIVITY
CONTROL
FOR
PRODUCTION
OF
CHEMICALS
68
SYNGAS
TO
OLEFINS
68
FE-BASED
FTO
68
CO-BASED
FTO
69
BIFUNCTIONAL
CATALYSTS
FOR
SYNGAS
TO
OLEFINS
72
SYNGAS
TO
AROMATICS
74
STA
VIA
OLEFINS
AS
INTERMEDIATES
(SOA)
74
STA
VIA
METHANOL/DIMETHYL
ETHER
AS
INTERMEDIATES
(SMA)
75
SYNGAS
TO
C2+
OXYGENATES
76
CONTENTS
VII
3.4.3.1
3.4.3.2
3.5
CO
2
C-CONTAINING
CO-BASED
CATALYST
FOR
SYNGAS
TO
C2+
OXYGENATES
78
CU-MODIFIED
FTS
CATALYSTS
80
SUMMARY
AND
OUTLOOK
82
REFERENCES
84
PART
II
METHANE
ACTIVATION
93
4
STEAM
AND
DRY
REFORMING
OF
METHANE
95
JOSE
LUIS
RICO
4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1
4.2.2
4.3
4.3.1
4.3.2
4.3.3
4.3.4
4.4
4.5
INTRODUCTION
95
STEAM
REFORMING
OF
METHANE
95
DRY
REFORMING
OF
METHANE
96
THERMODYNAMIC
ANALYSIS
OF
THE
SRM
AND
DRM
REACTIONS
97
HETEROGENEOUS
CATALYSTS
FOR
THE
SRM
97
NI-BASED
AND
OTHER
CATALYSTS
98
THEORETICAL
STUDIES
ON
THE
SRM
104
HETEROGENEOUS
CATALYSTS
FOR
THE
DRM
105
NOBLE
METAL
CATALYSTS
105
NI-BASED
CATALYSTS
106
CO-BASED
AND
OTHER
CATALYSTS
114
THEORETICAL
STUDIES
ON
THE
DRM
118
COMMENTS ON
BOTH
SRM
AND
DRM
PROCESSES
118
FINAL
REMARKS
119
REFERENCES
119
5
METHANE
ACTIVATION
OVER
ZEOLITES
129
MEERA
A.
SHAH
AND
RUSSELL
A.
TAYLOR
5.1
5.1.1
5.1.2
5.2
5.3
5.4
5.4.1
5.4.2
5.4.2.1
INTRODUCTION
129
THE
DIRECT
CONVERSION
OF
METHANE
130
INTRODUCTION
TO
ZEOLITES
131
OXIDATIVE
COUPLING
OF
METHANE
OVER
ZEOLITE
CATALYSTS
133
METHANE
DEHYDROAROMATIZATION
(MDA)
135
METAL-MODIFIED
ZEOLITES
FOR
DMTM
144
FE-MODIFIED
ZEOLITES
146
CU-MODIFIED ZEOLITES
149
ACTIVE
SITES
FOR
METHANE
PARTIAL
OXIDATION
IN
COPPER-MODIFIED
ZEOLITES
149
5.4.2.2
REACTION
MECHANISM
FOR
THE
PARTIAL
OXIDATION
OF
METHANE
OVER
COPPER-MODIFIED
ZEOLITES
151
5.4.2.3
ALTERNATIVES
TO
STEPWISE
METHANOL
PRODUCTION:
ISOTHERMAL
AND
DIRECT
CATALYTIC
CONVERSION
OF
METHANE
TO
METHANOL
OVER
COPPER-MODIFIED
ZEOLITES
153
5.4.2.4
EFFECT
OF
FRAMEWORK
TOPOLOGY
AND
COMPOSITION
ON
METHANE
PARTIAL
OXIDATION
OVER
COPPER-MODIFIED
ZEOLITES
154
VIII
CONTENTS
5.4.3
5.4.3.1
5.4.3.2
5.4.3.3
5.4.3.4
ZN-MODIFIED
ZEOLITES
156
MECHANISM OF
C-H
ACTIVATION
IN
ZINC-EXCHANGED
ZEOLITES
157
ZINC
OXIDE
CLUSTERS
IN
ZEOLITES
159
THE
ROLE
OF
BRONSTED
ACID
SITES
IN
C-H
ACTIVATION
160
REACTIVITY
OF
METHANE
WITH
SMALL
MOLECULES
ON
ZINC-MODIFIED
ZEOLITES
161
5.4.4
5.5
OTHER
D-BLOCK
METALS
IN
ZEOLITES
161
OUTLOOK
164
REFERENCES
165
6
THE
SELECTIVE
OXIDATION
OF
METHANE
TO
OXYGENATES
USING
HETEROGENEOUS
CATALYSTS
183
JAMES
H.
CARTER,
NICHOLAS
F.
DUMMER,
YING
KIT
CHOW,
CHRISTOPHER
WILLIAMS,
ALI
NASRALLAH,
DAVID
J.
WILLOCK,
GRAHAM
J.
HUTCHINGS,
AND
STUART
H.
TAYLOR
6.1
6.2
6.2.1
6.2.2
6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.4
INTRODUCTION
AND
HISTORICAL
CONTEXT
183
LIQUID-PHASE
REACTIONS
185
ZEOLITE
CATALYSTS
185
NOBLE
METAL
CATALYSTS
187
GAS-PHASE
REACTIONS
189
NON-ZEOLITE
CATALYSTS
190
ZEOLITE
CATALYSTS
192
COPPER
AS
THE
ACTIVE
COMPONENT
192
IRON
AS
THE
ACTIVE
COMPONENT
194
CONCLUSIONS
AND
OUTLOOK
195
REFERENCES
196
PART
III
ALKANE
ACTIVATION
203
7
CATALYTIC
CRACKING
OF
HYDROCARBONS
TO
LIGHT
OLEFINS
205
XIA
XIAO
AND
ZHEN
ZHAO
7.1
7.2
7.2.1
7.2.2
7.2.3
7.3
7.3.1
7.3.2
7.3.2.1
7.3.2.2
7.3.2.3
7.3.3
7.3.4
BACKGROUND
INTRODUCTION
205
REACTION
MECHANISM
OF
CATALYTIC
CRACKING
OVER
ZEOLITES
206
MONOMOLECULAR
OR
A-PROTOLYTIC
CRACKING
MECHANISM
206
BIMOLECULAR
CRACKING
MECHANISM
208
MONOMOLECULAR
AND
BIMOLECULAR
CRACKING
MECHANISM
212
DEVELOPMENT
OF
ZEOLITE
CATALYSTS
214
ZEOLITES
WITH
DIFFERENT
FRAMEWORK
STRUCTURES
214
ADJUSTMENT
OF
ACID
PROPERTIES
OF
ZSM-5
ZEOLITE
220
EFFECT
OF
SI/AL
RATIO
OF
ZSM-5
ZEOLITE
221
TUNING OF
AL
SITING
AND
DISTRIBUTION
IN
ZSM-5
ZEOLITE
226
MODIFICATION
OF
ZSM-5
ZEOLITES
WITH
DIFFERENT
ELEMENTS
227
ALKALINE
METAL
AND
ALKALI
EARTH
METAL-MODIFIED
ZSM-5
228
TRANSITION
METAL-MODIFIED
ZSM-5
229
CONTENTS
IX
7.3.5
RARE
EARTH
ELEMENT-MODIFIED
ZSM-5
230
7.3.6
PHOSPHORUS-MODIFIED
ZSM-5
232
7.4
NANO-ZSM-5
ZEOLITE
235
7.5
HIERARCHICAL
ZSM-5
ZEOLITES
242
7.5.1
MESOPOROUS/MICROPOROUS
ZSM-5
ZEOLITES
242
7.5.1.1
HARD
TEMPLATE
METHOD
242
7.5.1.2
POST-TREATMENT
METHOD
243
7.5.1.3
SOFT
TEMPLATE
METHOD
243
7.5.1.4
OTHER
METHODS
247
7.5.2
MACROPOROUS/MESOPOROUS/MICROPOROUS
ZSM-5
249
7.5.3
COMPOSITE
ZEOLITES
254
7.6
OUTLOOK
258
REFERENCES
260
8
CATALYTIC
DEHYDROGENATION
OF
LIGHT
ALKANES
273
AN-HUI
LU
8.1
INTRODUCTION
273
8.2
DIRECT
DEHYDROGENATION
274
8.2.1
COMMERCIAL
DEHYDROGENATION
PROCESSES
274
8.2.1.1
CATOFIN
PROCESS
275
8.2.1.2
OLEFLEX
PROCESS
275
8.2.1.3
ADHO
TECHNOLOGY
277
8.2.1.4
OTHER
PROCESSES
277
8.2.2
DIRECT
ALKANE
DEHYDROGENATION
CATALYSTS
278
8.2.2.1
CRO,-BASED
CATALYSTS
278
8.2.2.2
PT-BASED
CATALYSTS
281
8.3
OXIDATIVE
DEHYDROGENATION
285
8.3.1
TRANSITION
METAL
OXIDE
AND
ALKALINE-EARTH
METAL
OXYCHLORIDE
CATALYSTS
285
8.3.1.1
VANADIUM
OXIDE-BASED
CATALYSTS
285
8.3.1.2
MOVTENBO,
CATALYSTS
287
8.3.1.3
NICKEL
OXIDE-BASED
CATALYSTS
288
8.3.1.4
ALKALINE-EARTH
METAL
OXYCHLORIDE
CATALYSTS
289
8.3.1.5
CHEMICAL
LOOPING
ODH
291
8.3.2
BORON-BASED
CATALYSTS
292
8.3.2.1
DEVELOPMENT
OF
BORON-BASED
CATALYSTS
292
8.3.2.2
ACTIVE
SITES
OF
BORON-BASED
CATALYSTS
297
8.3.2.3
POSSIBLE
REACTION
PATHWAY
301
8.3.3
CARBON-BASED
CATALYSTS
307
8.3.3.1
DEVELOPMENT
OF
CARBON-BASED
CATALYSTS
307
8.3.3.2
IDENTIFICATION
OF
ACTIVE
SITES
308
8.3.3.3
SELECTIVITY
CONTROL
OF
OLEFINS
310
8.4
SUMMARY
AND
OUTLOOK
313
REFERENCES
315
X
CONTENTS
PART
IV
ZEOLITE
CATALYSIS
321
9
ZEOLITES
FOR
SUSTAINABLE
CHEMICAL
TRANSFORMATIONS
323
LUKE
HARVEY,
MATTHEW
DREWERY,
ERIC
KENNEDY,
AND
MICHAEL
STOCKENHUBER
9.1
9.1.1
9.1.2
9.1.3
9.1.4
9.1.4.1
9.1.5
9.1.5.1
9.2
INTRODUCTION
TO
ZEOLITES
AND
ZEOLITE
CHEMISTRY
323
ZEOLITE
CHEMISTRY
323
ZEOLITES
AS
CATALYSTS
324
SIZE
DISCRIMINATION:
MOLECULAR
SIEVES
325
ZEOLITES
AS
SUPPORTS
FOR
METAL
CATALYSTS
326
METHODS
OF
METAL
DEPOSITION
326
METALS
IN
THE
ZEOLITE
FRAMEWORK
329
METHODS
OF
PREPARATION
329
THE
NATURE
OF
ACTIVE
SITES
AND
DEACTIVATION
OF
ZEOLITE-BASED
CATALYSTS
332
9.2.1
9.2.1.1
9.2.1.2
9.2.1.3
9.3
9.3.1
9.3.1.1
9.3.1.2
9.3.1.3
9.3.2
9.3.2.1
ACTIVE
SITES
IN
ZEOLITE
CATALYSIS
332
ACID
SITES
333
BASIC
SITES
335
REDOX
SITES
IN
ZEOLITE
CATALYSTS
337
CAUSES
OF
DEACTIVATION
IN
ZEOLITE
CATALYSTS
338
POISONING
338
DEACTIVATION
THROUGH
CARBONACEOUS
DEPOSITS
(COKING)
338
INHIBITION
OF
CATALYST
ACTIVITY
DUE
TO
WATER
339
POISONING
OF
PALLADIUM
COMBUSTION
CATALYSTS
339
PARTICLE
SINTERING
AND
AGGLOMERATION
342
PARTICLE
AGGLOMERATION
IN
VENTILATION
AIR
METHANE
OXIDATION
CATALYSTS
342
9.4
FUTURE
DIRECTIONS
FOR ZEOLITE
CATALYSIS
343
REFERENCES
343
10
METHANOL
TO
HYDROCARBONS
351
WEILI
DAI,
LIU
YANG,
GUANGJUN
WU,
NAIJIA
GUAN,
AND
LANDONG
LI
10.1
10.2
10.2.1
BACKGROUND
INTRODUCTION
351
THE
DIRECT
MECHANISM
FOR
MTH
REACTION
352
THE
DEVELOPMENT
AND
MILESTONES
OF
THE
DIRECT
MECHANISM
352
10.2.2
10.3
10.3.1
10.3.2
10.3.3
10.4
10.5
10.6
THE
FIRST
C
-
C
BOND
FORMATION
353
THE
INDIRECT
REACTION
MECHANISM
FOR
MTH
REACTION
359
HYDROCARBON
POOL
MECHANISM
359
DUAL-CYCLE
MECHANISM
364
THE
CONNECTION
BETWEEN
THE
DUAL
CYCLES
367
BRIDGING
THE
DIRECT
AND
INDIRECT
MECHANISMS
370
ZEOLITE
CATALYSTS
FOR
MTH
CONVERSION
375
SUMMARY
AND
OUTLOOK
379
REFERENCES
380
CONTENTS
XI
PART
V
CARBON
DIOXIDE
AS
C1
BUILDING
BLOCK
391
11
OVERVIEW
ON
CO2
EMISSION
AND
CAPTURE
393
WANLIN
GAO
AND
QIANG
WANG
11.1
INTRODUCTION
393
11.2
CO
2
EMISSION
AND
RELATED
PROBLEMS
394
11.3
CO
2
CAPTURE
TECHNOLOGY
395
11.3.1
PRECOMBUSTION
CO
2
CAPTURE
396
11.3.1.1
INTERMEDIATE-TEMPERATURE
ADSORBENTS
397
11.3.1.2
HIGH-TEMPERATURE
ADSORBENTS
400
11.3.2
POSTCOMBUSTION
CO
2
CAPTURE
405
11.3.2.1
AMINE-BASED
SOLVENTS
406
11.3.2.2
AMINE-FUNCTIONALIZED
ADSORBENTS
407
11.3.2.3
MOF-BASED
ADSORBENTS
408
11.3.2.4
ZEOLITE
ADSORBENTS
409
11.3.2.5
CARBON-BASED
ADSORBENT
409
11.3.3
OXY-FUEL
COMBUSTION
CO2
CAPTURE
410
11.3.4
CHEMICAL
LOOPING
COMBUSTION
411
11.3.5
DIRECT
AIR
CAPTURE
OF
CO
2
413
11.3.6
CARBON
CAPTURE,
STORAGE,
AND
UTILIZATION
414
11.4
CONCLUSIONS
415
ACKNOWLEDGMENTS
416
REFERENCES
416
12
CO
2
REDUCTION
TO
FUELS
AND
CHEMICALS
425
JIAN
SUN
AND
LISHENG
GUO
12.1
INTRODUCTION
425
12.2
METHANATION
OF
CARBON
DIOXIDE
427
12.3
SYNTHESIS
OF
C
2+
HYDROCARBONS
430
12.3.1
ALKENES
430
12.3.2
LIQUEFIED
PETROLEUM
GAS
(LPG)
434
12.3.3
LIQUID
FUELS
434
12.3.4
AROMATICS
440
12.3.5
SYNTHESIS
OF
ALCOHOL
442
12.3.6
SYNTHESIS
OF
OTHER
VALUABLE
CHEMICALS
447
12.4
PHOTOCATALYTIC
AND
ELECTROCATALYTIC
CONVERSION
OF
CO
2
INTO
VALUABLE
FUELS
OR
CHEMICALS
449
REFERENCES
450
PART
VI
BIOMASS
CONVERSION
459
13
LIPIDS
TO
FUELS
AND
CHEMICALS
461
BOLONG
LI,
ARIF
ALI,
SHUTAO
LEI,
AND
CHEN
ZHAO
13.1
INTRODUCTION
461
XII
I
CONTENTS
INDEX
559
13.2
13.2.1
13.2.2
13.3
13.4
13.4.1
13.4.2
13.5
13.5.1
13.5.2
13.5.3
13.6
LIPIDS
TO
DIESEL-RANGE
HYDROCARBONS
462
DEOXYGENATION
OF
LIPIDS
OVER
SUPPORTED
METAL
SULFIDE
CATALYSTS
463
DEOXYGENATION
OF
LIPIDS
OVER
SULFUR-FREE
METAL
CATALYSTS
465
LIPIDS
TO
JET
FUEL
HYDROCARBONS
474
LIPIDS
TO
ALKENES
478
LIPIDS
TO
ALKENES
OVER
HOMOGENEOUS
CATALYSTS
479
LIPIDS
TO
ALKENES
OVER
HETEROGENEOUS
CATALYSTS
486
LIPIDS
TO
FATTY
ALCOHOLS
488
HYDROGENATION
OF
OILS
488
HYDROGENATION
OF
ESTERS
OR
METHYL
ESTERS
489
HYDROGENATION
OF
FATTY
ACIDS
493
SUMMARY
494
REFERENCES
496
14
LIGNIN
UPGRADING
507
YONG
GUO
AND
YANQIN
WANG
14.1
14.1.1
14.2
14.2.1
14.2.2
14.2.3
14.2.4
14.2.5
14.3
14.3.1
14.3.2
14.3.3
14.3.4
14.4
14.5
INTRODUCTION
507
STRUCTURE
OF
LIGNIN
508
CATALYTIC
DEPOLYMERIZATION
513
ACID
CATALYTIC
DEPOLYMERIZATION
513
ALKALINE
CATALYTIC
DEPOLYMERIZATION
518
REDUCTIVE
CATALYTIC
DEPOLYMERIZATION
521
OXIDATIVE
CATALYTIC
DEPOLYMERIZATION
527
OTHER
CATALYTIC
DEPOLYMERIZATION
530
UPGRADING
OF
MONOMERS
TO
FUELS
AND
CHEMICALS
532
UPGRADING
LIGNIN
MONOMERS
TO
CYCLOALKANES
532
UPGRADING
LIGNIN
MONOMERS
TO
AROMATIC
HYDROCARBONS
537
UPGRADING
LIGNIN
MONOMERS
TO
PHENOLS
542
UPGRADING
LIGNIN
MONOMERS
TO
OTHER
CHEMICALS
546
DIRECT
CONVERSION
OF
LIGNIN
TO
FUELS
AND
CHEMICALS
547
CONCLUSIONS
AND
PERSPECTIVE
549
REFERENCES
551 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Li, Landong 1980- Hargreaves, Justin S. J. |
author2_role | edt edt |
author2_variant | l l ll j s j h jsj jsjh |
author_GND | (DE-588)1266521828 (DE-588)113739434X |
author_facet | Li, Landong 1980- Hargreaves, Justin S. J. |
building | Verbundindex |
bvnumber | BV048321586 |
classification_rvk | VN 9200 VK 5570 |
ctrlnum | (OCoLC)1339072003 (DE-599)DNB1246104873 |
discipline | Chemie / Pharmazie |
discipline_str_mv | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000 c 4500</leader><controlfield tag="001">BV048321586</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240617</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">220711s2022 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,N47</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1246104873</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527344857</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-3-527-34485-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1339072003</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1246104873</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-83</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-11</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 9200</subfield><subfield code="0">(DE-625)147637:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VK 5570</subfield><subfield code="0">(DE-625)147405:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Heterogeneous catalysis for sustainable energy</subfield><subfield code="c">edited by Landong Li and Justin S. J. Hargreaves</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 568 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Heterogene Katalyse</subfield><subfield code="0">(DE-588)4123377-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nachhaltigkeit</subfield><subfield code="0">(DE-588)4326464-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Heterogene Katalyse</subfield><subfield code="0">(DE-588)4123377-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nachhaltigkeit</subfield><subfield code="0">(DE-588)4326464-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Landong</subfield><subfield code="d">1980-</subfield><subfield code="0">(DE-588)1266521828</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hargreaves, Justin S. J.</subfield><subfield code="0">(DE-588)113739434X</subfield><subfield code="4">edt</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-81589-0</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-81591-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, oBook</subfield><subfield code="z">978-3-527-81590-6</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34485-7/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033700915&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033700915</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV048321586 |
illustrated | Illustrated |
index_date | 2024-07-03T20:12:13Z |
indexdate | 2024-11-14T11:03:09Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527344857 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033700915 |
oclc_num | 1339072003 |
open_access_boolean | |
owner | DE-83 DE-703 DE-11 |
owner_facet | DE-83 DE-703 DE-11 |
physical | xiv, 568 Seiten Illustrationen, Diagramme |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Heterogeneous catalysis for sustainable energy edited by Landong Li and Justin S. J. Hargreaves Weinheim Wiley-VCH [2022] © 2022 xiv, 568 Seiten Illustrationen, Diagramme txt rdacontent n rdamedia nc rdacarrier Heterogene Katalyse (DE-588)4123377-3 gnd rswk-swf Nachhaltigkeit (DE-588)4326464-5 gnd rswk-swf (DE-588)4143413-4 Aufsatzsammlung gnd-content Heterogene Katalyse (DE-588)4123377-3 s Nachhaltigkeit (DE-588)4326464-5 s DE-604 Li, Landong 1980- (DE-588)1266521828 edt Hargreaves, Justin S. J. (DE-588)113739434X edt Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-81589-0 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-81591-3 Erscheint auch als Online-Ausgabe, oBook 978-3-527-81590-6 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34485-7/ DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033700915&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Heterogeneous catalysis for sustainable energy Heterogene Katalyse (DE-588)4123377-3 gnd Nachhaltigkeit (DE-588)4326464-5 gnd |
subject_GND | (DE-588)4123377-3 (DE-588)4326464-5 (DE-588)4143413-4 |
title | Heterogeneous catalysis for sustainable energy |
title_auth | Heterogeneous catalysis for sustainable energy |
title_exact_search | Heterogeneous catalysis for sustainable energy |
title_exact_search_txtP | Heterogeneous catalysis for sustainable energy |
title_full | Heterogeneous catalysis for sustainable energy edited by Landong Li and Justin S. J. Hargreaves |
title_fullStr | Heterogeneous catalysis for sustainable energy edited by Landong Li and Justin S. J. Hargreaves |
title_full_unstemmed | Heterogeneous catalysis for sustainable energy edited by Landong Li and Justin S. J. Hargreaves |
title_short | Heterogeneous catalysis for sustainable energy |
title_sort | heterogeneous catalysis for sustainable energy |
topic | Heterogene Katalyse (DE-588)4123377-3 gnd Nachhaltigkeit (DE-588)4326464-5 gnd |
topic_facet | Heterogene Katalyse Nachhaltigkeit Aufsatzsammlung |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34485-7/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033700915&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT lilandong heterogeneouscatalysisforsustainableenergy AT hargreavesjustinsj heterogeneouscatalysisforsustainableenergy AT wileyvch heterogeneouscatalysisforsustainableenergy |