The principles of deep learning theory: an effective theory approach to understanding neural networks
Gespeichert in:
Hauptverfasser: | , |
---|---|
Weitere Verfasser: | |
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schlagworte: | |
Online-Zugang: | BSB01 BTU01 FHN01 TUM01 UBM01 UER01 Volltext |
Beschreibung: | 1 Online-Ressource (x, 460 Seiten) Diagramme |
ISBN: | 9781009023405 |
DOI: | 10.1017/9781009023405 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048311248 | ||
003 | DE-604 | ||
005 | 20230903 | ||
007 | cr|uuu---uuuuu | ||
008 | 220704s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781009023405 |c Online |9 978-1-00-902340-5 | ||
024 | 7 | |a 10.1017/9781009023405 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781009023405 | ||
035 | |a (OCoLC)1335400548 | ||
035 | |a (DE-599)BVBBV048311248 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-92 |a DE-91 |a DE-29 |a DE-19 | ||
082 | 0 | |a 006.3/1 | |
100 | 1 | |a Roberts, Daniel A. |d 1987- |e Verfasser |0 (DE-588)1261776224 |4 aut | |
245 | 1 | 0 | |a The principles of deep learning theory |b an effective theory approach to understanding neural networks |c Daniel A. Roberts mit Sho Yaida (Meta AI) ; based on research in collaboration with Boris Hanin (Princeton University) |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (x, 460 Seiten) |b Diagramme | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Deep learning (Machine learning) | |
650 | 0 | 7 | |a Deep learning |0 (DE-588)1135597375 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Deep learning |0 (DE-588)1135597375 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Yaida, Sho |e Verfasser |0 (DE-588)1261764668 |4 aut | |
700 | 1 | |a Hanin, Boris |d ca. 20./21. Jh. |0 (DE-588)1261776534 |4 ctb | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe, Hardcover |z 978-1-31-651933-2 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781009023405 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033690822 | ||
966 | e | |u https://doi.org/10.1017/9781009023405 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009023405 |l BTU01 |p ZDB-20-CBO |q BTU_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009023405 |l FHN01 |p ZDB-20-CBO |q FHN_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009023405 |l TUM01 |p ZDB-20-CBO |q TUM_Paketkauf_2022 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009023405 |l UBM01 |p ZDB-20-CBO |q UBM_PDA_CBO_Kauf_2023 |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781009023405 |l UER01 |p ZDB-20-CBO |q UER_PDA_CBO_Kauf_2023 |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184161818247168 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Roberts, Daniel A. 1987- Yaida, Sho |
author2 | Hanin, Boris ca. 20./21. Jh |
author2_role | ctb |
author2_variant | b h bh |
author_GND | (DE-588)1261776224 (DE-588)1261764668 (DE-588)1261776534 |
author_facet | Roberts, Daniel A. 1987- Yaida, Sho Hanin, Boris ca. 20./21. Jh |
author_role | aut aut |
author_sort | Roberts, Daniel A. 1987- |
author_variant | d a r da dar s y sy |
building | Verbundindex |
bvnumber | BV048311248 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781009023405 (OCoLC)1335400548 (DE-599)BVBBV048311248 |
dewey-full | 006.3/1 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3/1 |
dewey-search | 006.3/1 |
dewey-sort | 16.3 11 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1017/9781009023405 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02293nmm a2200469zc 4500</leader><controlfield tag="001">BV048311248</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230903 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220704s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009023405</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-00-902340-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009023405</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781009023405</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1335400548</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048311248</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-19</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/1</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Roberts, Daniel A.</subfield><subfield code="d">1987-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1261776224</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The principles of deep learning theory</subfield><subfield code="b">an effective theory approach to understanding neural networks</subfield><subfield code="c">Daniel A. Roberts mit Sho Yaida (Meta AI) ; based on research in collaboration with Boris Hanin (Princeton University)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 460 Seiten)</subfield><subfield code="b">Diagramme</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning (Machine learning)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Deep learning</subfield><subfield code="0">(DE-588)1135597375</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yaida, Sho</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1261764668</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hanin, Boris</subfield><subfield code="d">ca. 20./21. Jh.</subfield><subfield code="0">(DE-588)1261776534</subfield><subfield code="4">ctb</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Hardcover</subfield><subfield code="z">978-1-31-651933-2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781009023405</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033690822</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009023405</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009023405</subfield><subfield code="l">BTU01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BTU_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009023405</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">FHN_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009023405</subfield><subfield code="l">TUM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">TUM_Paketkauf_2022</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009023405</subfield><subfield code="l">UBM01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBM_PDA_CBO_Kauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781009023405</subfield><subfield code="l">UER01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UER_PDA_CBO_Kauf_2023</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048311248 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:09:36Z |
indexdate | 2024-07-10T09:34:57Z |
institution | BVB |
isbn | 9781009023405 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033690822 |
oclc_num | 1335400548 |
open_access_boolean | |
owner | DE-12 DE-92 DE-91 DE-BY-TUM DE-29 DE-19 DE-BY-UBM |
owner_facet | DE-12 DE-92 DE-91 DE-BY-TUM DE-29 DE-19 DE-BY-UBM |
physical | 1 Online-Ressource (x, 460 Seiten) Diagramme |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO BTU_PDA_CBO ZDB-20-CBO FHN_PDA_CBO ZDB-20-CBO TUM_Paketkauf_2022 ZDB-20-CBO UBM_PDA_CBO_Kauf_2023 ZDB-20-CBO UER_PDA_CBO_Kauf_2023 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Roberts, Daniel A. 1987- Verfasser (DE-588)1261776224 aut The principles of deep learning theory an effective theory approach to understanding neural networks Daniel A. Roberts mit Sho Yaida (Meta AI) ; based on research in collaboration with Boris Hanin (Princeton University) Cambridge Cambridge University Press 2022 1 Online-Ressource (x, 460 Seiten) Diagramme txt rdacontent c rdamedia cr rdacarrier Deep learning (Machine learning) Deep learning (DE-588)1135597375 gnd rswk-swf Deep learning (DE-588)1135597375 s DE-604 Yaida, Sho Verfasser (DE-588)1261764668 aut Hanin, Boris ca. 20./21. Jh. (DE-588)1261776534 ctb Erscheint auch als Druck-Ausgabe, Hardcover 978-1-31-651933-2 https://doi.org/10.1017/9781009023405 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Roberts, Daniel A. 1987- Yaida, Sho The principles of deep learning theory an effective theory approach to understanding neural networks Deep learning (Machine learning) Deep learning (DE-588)1135597375 gnd |
subject_GND | (DE-588)1135597375 |
title | The principles of deep learning theory an effective theory approach to understanding neural networks |
title_auth | The principles of deep learning theory an effective theory approach to understanding neural networks |
title_exact_search | The principles of deep learning theory an effective theory approach to understanding neural networks |
title_exact_search_txtP | The principles of deep learning theory an effective theory approach to understanding neural networks |
title_full | The principles of deep learning theory an effective theory approach to understanding neural networks Daniel A. Roberts mit Sho Yaida (Meta AI) ; based on research in collaboration with Boris Hanin (Princeton University) |
title_fullStr | The principles of deep learning theory an effective theory approach to understanding neural networks Daniel A. Roberts mit Sho Yaida (Meta AI) ; based on research in collaboration with Boris Hanin (Princeton University) |
title_full_unstemmed | The principles of deep learning theory an effective theory approach to understanding neural networks Daniel A. Roberts mit Sho Yaida (Meta AI) ; based on research in collaboration with Boris Hanin (Princeton University) |
title_short | The principles of deep learning theory |
title_sort | the principles of deep learning theory an effective theory approach to understanding neural networks |
title_sub | an effective theory approach to understanding neural networks |
topic | Deep learning (Machine learning) Deep learning (DE-588)1135597375 gnd |
topic_facet | Deep learning (Machine learning) Deep learning |
url | https://doi.org/10.1017/9781009023405 |
work_keys_str_mv | AT robertsdaniela theprinciplesofdeeplearningtheoryaneffectivetheoryapproachtounderstandingneuralnetworks AT yaidasho theprinciplesofdeeplearningtheoryaneffectivetheoryapproachtounderstandingneuralnetworks AT haninboris theprinciplesofdeeplearningtheoryaneffectivetheoryapproachtounderstandingneuralnetworks |