Automated deep learning using neural network intelligence: develop and design PyTorch and TensorFlow models using Python
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berkeley, CA
Apress
2022
|
Schlagworte: | |
Online-Zugang: | FAB01 FAW01 FHA01 FHD01 FHI01 FHM01 FHN01 FHO01 FHR01 FKE01 FLA01 FWS01 FWS02 HTW01 UBR01 UBR01 UBW01 UBY01 URL des Erstveröffentlichers |
Beschreibung: | 1 Online-Ressource (XVII, 384 Seiten) Illustrationen |
ISBN: | 9781484281499 |
DOI: | 10.1007/978-1-4842-8149-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048307909 | ||
003 | DE-604 | ||
005 | 20220830 | ||
007 | cr|uuu---uuuuu | ||
008 | 220701s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781484281499 |c Online |9 978-1-4842-8149-9 | ||
024 | 7 | |a 10.1007/978-1-4842-8149-9 |2 doi | |
035 | |a (ZDB-2-CWD)9781484281499 | ||
035 | |a (OCoLC)1335402727 | ||
035 | |a (DE-599)BVBBV048307909 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 |a DE-860 |a DE-1046 |a DE-1043 |a DE-Aug4 |a DE-898 |a DE-188 |a DE-523 |a DE-859 |a DE-863 |a DE-1050 |a DE-20 |a DE-1051 |a DE-862 |a DE-92 |a DE-573 |a DE-M347 |a DE-706 | ||
082 | 0 | |a 006.3 |2 23 | |
084 | |a DAT 000 |2 stub | ||
100 | 1 | |a Gridin, Ivan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Automated deep learning using neural network intelligence |b develop and design PyTorch and TensorFlow models using Python |c Ivan Gridin |
264 | 1 | |a Berkeley, CA |b Apress |c 2022 | |
300 | |a 1 Online-Ressource (XVII, 384 Seiten) |b Illustrationen | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
650 | 4 | |a Artificial Intelligence | |
650 | 4 | |a Machine Learning | |
650 | 4 | |a Python | |
650 | 4 | |a Artificial intelligence | |
650 | 4 | |a Machine learning | |
650 | 4 | |a Python (Computer program language) | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4842-8148-2 |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-4842-8150-5 |
856 | 4 | 0 | |u https://doi.org/10.1007/978-1-4842-8149-9 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-2-CWD |a ZDB-30-PQE | ||
940 | 1 | |q ZDB-2-CWD_2022 | |
999 | |a oai:aleph.bib-bvb.de:BVB01-033687584 | ||
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l FAB01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l FAW01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l FHA01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l FHD01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l FHI01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l FHM01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l FHN01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l FHO01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l FHR01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l FKE01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l FLA01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l FWS01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l FWS02 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l HTW01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l UBR01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://ebookcentral.proquest.com/lib/uniregensburg-ebooks/detail.action?docID=7020107 |l UBR01 |p ZDB-30-PQE |q UBR Sammelbestellung 2022 |x Aggregator |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l UBW01 |p ZDB-2-CWD |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1007/978-1-4842-8149-9 |l UBY01 |p ZDB-2-CWD |x Verlag |3 Volltext |
Datensatz im Suchindex
DE-BY-FWS_katkey | 992691 |
---|---|
_version_ | 1824553493442068481 |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Gridin, Ivan |
author_facet | Gridin, Ivan |
author_role | aut |
author_sort | Gridin, Ivan |
author_variant | i g ig |
building | Verbundindex |
bvnumber | BV048307909 |
classification_tum | DAT 000 |
collection | ZDB-2-CWD ZDB-30-PQE |
ctrlnum | (ZDB-2-CWD)9781484281499 (OCoLC)1335402727 (DE-599)BVBBV048307909 |
dewey-full | 006.3 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 006 - Special computer methods |
dewey-raw | 006.3 |
dewey-search | 006.3 |
dewey-sort | 16.3 |
dewey-tens | 000 - Computer science, information, general works |
discipline | Informatik |
discipline_str_mv | Informatik |
doi_str_mv | 10.1007/978-1-4842-8149-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03423nmm a2200649zc 4500</leader><controlfield tag="001">BV048307909</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220830 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220701s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781484281499</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-4842-8149-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-1-4842-8149-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-2-CWD)9781484281499</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1335402727</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048307909</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-898</subfield><subfield code="a">DE-188</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-859</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-1050</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-1051</subfield><subfield code="a">DE-862</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">DAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gridin, Ivan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Automated deep learning using neural network intelligence</subfield><subfield code="b">develop and design PyTorch and TensorFlow models using Python</subfield><subfield code="c">Ivan Gridin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berkeley, CA</subfield><subfield code="b">Apress</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 384 Seiten)</subfield><subfield code="b">Illustrationen</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine Learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Artificial intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Python (Computer program language)</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4842-8148-2</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-4842-8150-5</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-CWD</subfield><subfield code="a">ZDB-30-PQE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-CWD_2022</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033687584</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">FAB01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">FHA01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">FHD01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">FHI01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">FHM01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">FHN01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">FHO01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">FHR01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">FKE01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">FLA01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">FWS01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">FWS02</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">HTW01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/uniregensburg-ebooks/detail.action?docID=7020107</subfield><subfield code="l">UBR01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBR Sammelbestellung 2022</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">UBW01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1007/978-1-4842-8149-9</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-2-CWD</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048307909 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:08:31Z |
indexdate | 2025-02-20T06:36:45Z |
institution | BVB |
isbn | 9781484281499 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033687584 |
oclc_num | 1335402727 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-860 DE-1046 DE-1043 DE-Aug4 DE-898 DE-BY-UBR DE-188 DE-523 DE-859 DE-863 DE-BY-FWS DE-1050 DE-20 DE-1051 DE-862 DE-BY-FWS DE-92 DE-573 DE-M347 DE-706 |
owner_facet | DE-355 DE-BY-UBR DE-860 DE-1046 DE-1043 DE-Aug4 DE-898 DE-BY-UBR DE-188 DE-523 DE-859 DE-863 DE-BY-FWS DE-1050 DE-20 DE-1051 DE-862 DE-BY-FWS DE-92 DE-573 DE-M347 DE-706 |
physical | 1 Online-Ressource (XVII, 384 Seiten) Illustrationen |
psigel | ZDB-2-CWD ZDB-30-PQE ZDB-2-CWD_2022 ZDB-30-PQE UBR Sammelbestellung 2022 |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Apress |
record_format | marc |
spellingShingle | Gridin, Ivan Automated deep learning using neural network intelligence develop and design PyTorch and TensorFlow models using Python Artificial Intelligence Machine Learning Python Artificial intelligence Machine learning Python (Computer program language) |
title | Automated deep learning using neural network intelligence develop and design PyTorch and TensorFlow models using Python |
title_auth | Automated deep learning using neural network intelligence develop and design PyTorch and TensorFlow models using Python |
title_exact_search | Automated deep learning using neural network intelligence develop and design PyTorch and TensorFlow models using Python |
title_exact_search_txtP | Automated deep learning using neural network intelligence develop and design PyTorch and TensorFlow models using Python |
title_full | Automated deep learning using neural network intelligence develop and design PyTorch and TensorFlow models using Python Ivan Gridin |
title_fullStr | Automated deep learning using neural network intelligence develop and design PyTorch and TensorFlow models using Python Ivan Gridin |
title_full_unstemmed | Automated deep learning using neural network intelligence develop and design PyTorch and TensorFlow models using Python Ivan Gridin |
title_short | Automated deep learning using neural network intelligence |
title_sort | automated deep learning using neural network intelligence develop and design pytorch and tensorflow models using python |
title_sub | develop and design PyTorch and TensorFlow models using Python |
topic | Artificial Intelligence Machine Learning Python Artificial intelligence Machine learning Python (Computer program language) |
topic_facet | Artificial Intelligence Machine Learning Python Artificial intelligence Machine learning Python (Computer program language) |
url | https://doi.org/10.1007/978-1-4842-8149-9 |
work_keys_str_mv | AT gridinivan automateddeeplearningusingneuralnetworkintelligencedevelopanddesignpytorchandtensorflowmodelsusingpython |