Interpreting discrete choice models:
In discrete choice models the relationships between the independent variables and the choice probabilities are nonlinear, depending on both the value of the particular independent variable being interpreted and the values of the other independent variables. Thus, interpreting the magnitude of the ef...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Cambridge
Cambridge University Press
2022
|
Schlagworte: | |
Online-Zugang: | BSB01 UBG01 URL des Erstveröffentlichers |
Zusammenfassung: | In discrete choice models the relationships between the independent variables and the choice probabilities are nonlinear, depending on both the value of the particular independent variable being interpreted and the values of the other independent variables. Thus, interpreting the magnitude of the effects (the "substantive effects") of the independent variables on choice behavior requires the use of additional interpretative techniques. Three common techniques for interpretation are described here: first differences, marginal effects and elasticities, and odds ratios. Concepts related to these techniques are also discussed, as well as methods to account for estimation uncertainty. Interpretation of binary logits, ordered logits, multinomial and conditional logits, and mixed discrete choice models such as mixed multinomial logits and random effects logits for panel data are covered in detail. The techniques discussed here are general, and can be applied to other models with discrete dependent variables which are not specifically described here |
Beschreibung: | Title from publisher's bibliographic system (viewed on 07 Apr 2022) |
Beschreibung: | 1 Online-Ressource (76 Seiten) |
ISBN: | 9781108873000 |
DOI: | 10.1017/9781108873000 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048290004 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220617s2022 |||| o||u| ||||||eng d | ||
020 | |a 9781108873000 |c Online |9 978-1-108-87300-0 | ||
024 | 7 | |a 10.1017/9781108873000 |2 doi | |
035 | |a (ZDB-20-CBO)CR9781108873000 | ||
035 | |a (OCoLC)1334026115 | ||
035 | |a (DE-599)BVBBV048290004 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-473 | ||
082 | 0 | |a 519.542 | |
100 | 1 | |a Glasgow, Garrett |d 1971- |0 (DE-588)1260075257 |4 aut | |
245 | 1 | 0 | |a Interpreting discrete choice models |c Garrett Glasgow |
264 | 1 | |a Cambridge |b Cambridge University Press |c 2022 | |
300 | |a 1 Online-Ressource (76 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Title from publisher's bibliographic system (viewed on 07 Apr 2022) | ||
520 | |a In discrete choice models the relationships between the independent variables and the choice probabilities are nonlinear, depending on both the value of the particular independent variable being interpreted and the values of the other independent variables. Thus, interpreting the magnitude of the effects (the "substantive effects") of the independent variables on choice behavior requires the use of additional interpretative techniques. Three common techniques for interpretation are described here: first differences, marginal effects and elasticities, and odds ratios. Concepts related to these techniques are also discussed, as well as methods to account for estimation uncertainty. Interpretation of binary logits, ordered logits, multinomial and conditional logits, and mixed discrete choice models such as mixed multinomial logits and random effects logits for panel data are covered in detail. The techniques discussed here are general, and can be applied to other models with discrete dependent variables which are not specifically described here | ||
650 | 4 | |a Statistical decision | |
650 | 4 | |a Decision making / Mathematical models | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 978-1-108-81940-4 |
856 | 4 | 0 | |u https://doi.org/10.1017/9781108873000 |x Verlag |z URL des Erstveröffentlichers |3 Volltext |
912 | |a ZDB-20-CBO | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033670024 | ||
966 | e | |u https://doi.org/10.1017/9781108873000 |l BSB01 |p ZDB-20-CBO |q BSB_PDA_CBO |x Verlag |3 Volltext | |
966 | e | |u https://doi.org/10.1017/9781108873000 |l UBG01 |p ZDB-20-CBO |q UBG_PDA_CBO |x Verlag |3 Volltext |
Datensatz im Suchindex
_version_ | 1804184122568998912 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Glasgow, Garrett 1971- |
author_GND | (DE-588)1260075257 |
author_facet | Glasgow, Garrett 1971- |
author_role | aut |
author_sort | Glasgow, Garrett 1971- |
author_variant | g g gg |
building | Verbundindex |
bvnumber | BV048290004 |
collection | ZDB-20-CBO |
ctrlnum | (ZDB-20-CBO)CR9781108873000 (OCoLC)1334026115 (DE-599)BVBBV048290004 |
dewey-full | 519.542 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.542 |
dewey-search | 519.542 |
dewey-sort | 3519.542 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
doi_str_mv | 10.1017/9781108873000 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02543nmm a2200397zc 4500</leader><controlfield tag="001">BV048290004</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220617s2022 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781108873000</subfield><subfield code="c">Online</subfield><subfield code="9">978-1-108-87300-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781108873000</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-20-CBO)CR9781108873000</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1334026115</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048290004</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-473</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.542</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Glasgow, Garrett</subfield><subfield code="d">1971-</subfield><subfield code="0">(DE-588)1260075257</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interpreting discrete choice models</subfield><subfield code="c">Garrett Glasgow</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (76 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 07 Apr 2022)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In discrete choice models the relationships between the independent variables and the choice probabilities are nonlinear, depending on both the value of the particular independent variable being interpreted and the values of the other independent variables. Thus, interpreting the magnitude of the effects (the "substantive effects") of the independent variables on choice behavior requires the use of additional interpretative techniques. Three common techniques for interpretation are described here: first differences, marginal effects and elasticities, and odds ratios. Concepts related to these techniques are also discussed, as well as methods to account for estimation uncertainty. Interpretation of binary logits, ordered logits, multinomial and conditional logits, and mixed discrete choice models such as mixed multinomial logits and random effects logits for panel data are covered in detail. The techniques discussed here are general, and can be applied to other models with discrete dependent variables which are not specifically described here</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistical decision</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Decision making / Mathematical models</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-1-108-81940-4</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1017/9781108873000</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-20-CBO</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033670024</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108873000</subfield><subfield code="l">BSB01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">BSB_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1017/9781108873000</subfield><subfield code="l">UBG01</subfield><subfield code="p">ZDB-20-CBO</subfield><subfield code="q">UBG_PDA_CBO</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV048290004 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:03:16Z |
indexdate | 2024-07-10T09:34:19Z |
institution | BVB |
isbn | 9781108873000 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033670024 |
oclc_num | 1334026115 |
open_access_boolean | |
owner | DE-12 DE-473 DE-BY-UBG |
owner_facet | DE-12 DE-473 DE-BY-UBG |
physical | 1 Online-Ressource (76 Seiten) |
psigel | ZDB-20-CBO ZDB-20-CBO BSB_PDA_CBO ZDB-20-CBO UBG_PDA_CBO |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
spelling | Glasgow, Garrett 1971- (DE-588)1260075257 aut Interpreting discrete choice models Garrett Glasgow Cambridge Cambridge University Press 2022 1 Online-Ressource (76 Seiten) txt rdacontent c rdamedia cr rdacarrier Title from publisher's bibliographic system (viewed on 07 Apr 2022) In discrete choice models the relationships between the independent variables and the choice probabilities are nonlinear, depending on both the value of the particular independent variable being interpreted and the values of the other independent variables. Thus, interpreting the magnitude of the effects (the "substantive effects") of the independent variables on choice behavior requires the use of additional interpretative techniques. Three common techniques for interpretation are described here: first differences, marginal effects and elasticities, and odds ratios. Concepts related to these techniques are also discussed, as well as methods to account for estimation uncertainty. Interpretation of binary logits, ordered logits, multinomial and conditional logits, and mixed discrete choice models such as mixed multinomial logits and random effects logits for panel data are covered in detail. The techniques discussed here are general, and can be applied to other models with discrete dependent variables which are not specifically described here Statistical decision Decision making / Mathematical models Erscheint auch als Druck-Ausgabe 978-1-108-81940-4 https://doi.org/10.1017/9781108873000 Verlag URL des Erstveröffentlichers Volltext |
spellingShingle | Glasgow, Garrett 1971- Interpreting discrete choice models Statistical decision Decision making / Mathematical models |
title | Interpreting discrete choice models |
title_auth | Interpreting discrete choice models |
title_exact_search | Interpreting discrete choice models |
title_exact_search_txtP | Interpreting discrete choice models |
title_full | Interpreting discrete choice models Garrett Glasgow |
title_fullStr | Interpreting discrete choice models Garrett Glasgow |
title_full_unstemmed | Interpreting discrete choice models Garrett Glasgow |
title_short | Interpreting discrete choice models |
title_sort | interpreting discrete choice models |
topic | Statistical decision Decision making / Mathematical models |
topic_facet | Statistical decision Decision making / Mathematical models |
url | https://doi.org/10.1017/9781108873000 |
work_keys_str_mv | AT glasgowgarrett interpretingdiscretechoicemodels |