Social networks with rich edge semantics:
"Social Networks with Rich Edge Semantics introduces a new mechanism for representing social networks in which pairwise relationships can be drawn from a range of realistic possibilities, including different types of relationships, different strengths in the directions of a pair, positive and n...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Boca Raton, FL
CRC Press, Taylor & Francis Group
[2017]
|
Ausgabe: | First edition |
Schriftenreihe: | Chapman & Hall/CRC data mining and knowledge discovery series
|
Schlagworte: | |
Online-Zugang: | Volltext |
Zusammenfassung: | "Social Networks with Rich Edge Semantics introduces a new mechanism for representing social networks in which pairwise relationships can be drawn from a range of realistic possibilities, including different types of relationships, different strengths in the directions of a pair, positive and negative relationships, and relationships whose intensities change with time. For each possibility, the book shows how to model the social network using spectral embedding. It also shows how to compose the techniques so that multiple edge semantics can be modeled together, and the modeling techniques are then applied to a range of datasets. Features introduces the reader to difficulties with current social network analysis, and the need for richer representations of relationships among nodes, including accounting for intensity, direction, type, positive/negative, and changing intensities over time presents a novel mechanism to allow social networks with qualitatively different kinds of relationships to be described and analyzed includes extensions to the important technique of spectral embedding, shows that they are mathematically well motivated and proves that their results are appropriates hows how to exploit embeddings to understand structures within social networks, including subgroups, positional significance, link or edge prediction, consistency of role in different contexts, and net flow of properties through a node illustrates the use of the approach for real-world problems for online social networks, criminal and drug smuggling networks, and networks where the nodes are themselves groups suitable for researchers and students in social network research, data science, statistical learning, and related areas, this book will help to provide a deeper understanding of real-world social networks."--Provided by publisher |
Beschreibung: | 1 Online-Ressource (xx, 210 Seiten) |
ISBN: | 1138032433 1315390590 1315390604 1315390612 1315390620 9781138032439 9781315390598 9781315390604 9781315390611 9781315390628 |
Zugangseinschränkungen: | Open Access |
Internformat
MARC
LEADER | 00000nmm a2200000 c 4500 | ||
---|---|---|---|
001 | BV048279039 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 220610s2017 |||| o||u| ||||||eng d | ||
020 | |a 1138032433 |q (electronic bk.) |9 1138032433 | ||
020 | |a 1315390590 |9 1315390590 | ||
020 | |a 1315390604 |9 1315390604 | ||
020 | |a 1315390612 |9 1315390612 | ||
020 | |a 1315390620 |9 1315390620 | ||
020 | |a 9781138032439 |q (electronic bk.) |9 9781138032439 | ||
020 | |a 9781315390598 |q (ebook: Mobi) |9 9781315390598 | ||
020 | |a 9781315390604 |9 9781315390604 | ||
020 | |a 9781315390611 |9 9781315390611 | ||
020 | |a 9781315390628 |q (ebook. PDF) |9 9781315390628 | ||
024 | 7 | |a 10.1201/9781315390628 |2 doi | |
035 | |a (OCoLC)993984779 | ||
035 | |a (DE-599)BVBBV048279039 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-355 | ||
100 | 1 | |a Zheng, Quan |c (Telecommunications engineer) |e Verfasser |4 aut | |
245 | 1 | 0 | |a Social networks with rich edge semantics |c Quan Zheng, David Skillicorn |
250 | |a First edition | ||
264 | 1 | |a Boca Raton, FL |b CRC Press, Taylor & Francis Group |c [2017] | |
300 | |a 1 Online-Ressource (xx, 210 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Chapman & Hall/CRC data mining and knowledge discovery series | |
505 | 8 | |a Cover ; Half title ; Published titles ; Title ; Copyright ; Contents ; Preface ; List of figures ; List of tables ; Glossary ; Chapter 1 introduction; 1.1 what is a social network | |
505 | 8 | |a 1.2 multiple aspects of relationships 1.3 formally representing social networks ; Chapter 2 the core model | |
505 | 8 | |a 2.1 representing networks to understand their structures 2.2 building layered models ; 2.3 summary ; Chapter 3 background; 3.1 graph theory background | |
505 | 8 | |a 3.2 spectral graph theory 3.2.1 the unnormalized graph laplacian ; 3.2.2 the normalized graph laplacians ; 3.3 spectral pipeline | |
505 | 8 | |a 3.4 spectral approaches to clustering 3.4.1 undirected spectral clustering algorithms ; 3.4.2 which laplacian clustering should be used | |
506 | 0 | |a Open Access |5 EbpS | |
520 | 3 | |a "Social Networks with Rich Edge Semantics introduces a new mechanism for representing social networks in which pairwise relationships can be drawn from a range of realistic possibilities, including different types of relationships, different strengths in the directions of a pair, positive and negative relationships, and relationships whose intensities change with time. For each possibility, the book shows how to model the social network using spectral embedding. It also shows how to compose the techniques so that multiple edge semantics can be modeled together, and the modeling techniques are then applied to a range of datasets. Features introduces the reader to difficulties with current social network analysis, and the need for richer representations of relationships among nodes, including accounting for intensity, direction, type, positive/negative, and changing intensities over time presents a novel mechanism to allow social networks with qualitatively different kinds of relationships to be described and analyzed includes extensions to the important technique of spectral embedding, shows that they are mathematically well motivated and proves that their results are appropriates hows how to exploit embeddings to understand structures within social networks, including subgroups, positional significance, link or edge prediction, consistency of role in different contexts, and net flow of properties through a node illustrates the use of the approach for real-world problems for online social networks, criminal and drug smuggling networks, and networks where the nodes are themselves groups suitable for researchers and students in social network research, data science, statistical learning, and related areas, this book will help to provide a deeper understanding of real-world social networks."--Provided by publisher | |
650 | 4 | |a Social Media | |
650 | 4 | |a Médias sociaux | |
650 | 7 | |a Réseaux sociaux |2 Modèles mathématiques | |
650 | 4 | |a Web sémantique | |
650 | 4 | |a Internet: general works | |
650 | 4 | |a Semantic Web | |
650 | 4 | |a social media | |
650 | 4 | |a Social media | |
650 | 7 | |a Social networks |2 Mathematical models | |
650 | 7 | |a BUSINESS & ECONOMICS |2 Statistics | |
650 | 7 | |a COMPUTERS |2 Machine Theory | |
650 | 4 | |a Semantic Web | |
650 | 4 | |a Social media | |
650 | 4 | |a Social networks |x Mathematical models | |
653 | 6 | |a Electronic books | |
653 | 6 | |a Electronic books | |
700 | 1 | |a Skillicorn, David B. |e Sonstige |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |z 9781315390628 |z 9781315390611 |
856 | 4 | 0 | |u https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1578904 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-4-EOAC | ||
999 | |a oai:aleph.bib-bvb.de:BVB01-033659204 | ||
542 | 1 | |f This work is licensed under a Creative Commons license |u https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode |
Datensatz im Suchindex
_version_ | 1804184102726795264 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Zheng, Quan (Telecommunications engineer) |
author_facet | Zheng, Quan (Telecommunications engineer) |
author_role | aut |
author_sort | Zheng, Quan (Telecommunications engineer) |
author_variant | q z qz |
building | Verbundindex |
bvnumber | BV048279039 |
collection | ZDB-4-EOAC |
contents | Cover ; Half title ; Published titles ; Title ; Copyright ; Contents ; Preface ; List of figures ; List of tables ; Glossary ; Chapter 1 introduction; 1.1 what is a social network 1.2 multiple aspects of relationships 1.3 formally representing social networks ; Chapter 2 the core model 2.1 representing networks to understand their structures 2.2 building layered models ; 2.3 summary ; Chapter 3 background; 3.1 graph theory background 3.2 spectral graph theory 3.2.1 the unnormalized graph laplacian ; 3.2.2 the normalized graph laplacians ; 3.3 spectral pipeline 3.4 spectral approaches to clustering 3.4.1 undirected spectral clustering algorithms ; 3.4.2 which laplacian clustering should be used |
ctrlnum | (OCoLC)993984779 (DE-599)BVBBV048279039 |
edition | First edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05089nmm a2200733 c 4500</leader><controlfield tag="001">BV048279039</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220610s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1138032433</subfield><subfield code="q">(electronic bk.)</subfield><subfield code="9">1138032433</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1315390590</subfield><subfield code="9">1315390590</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1315390604</subfield><subfield code="9">1315390604</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1315390612</subfield><subfield code="9">1315390612</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1315390620</subfield><subfield code="9">1315390620</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781138032439</subfield><subfield code="q">(electronic bk.)</subfield><subfield code="9">9781138032439</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781315390598</subfield><subfield code="q">(ebook: Mobi)</subfield><subfield code="9">9781315390598</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781315390604</subfield><subfield code="9">9781315390604</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781315390611</subfield><subfield code="9">9781315390611</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781315390628</subfield><subfield code="q">(ebook. PDF)</subfield><subfield code="9">9781315390628</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9781315390628</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)993984779</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV048279039</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zheng, Quan</subfield><subfield code="c">(Telecommunications engineer)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Social networks with rich edge semantics</subfield><subfield code="c">Quan Zheng, David Skillicorn</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton, FL</subfield><subfield code="b">CRC Press, Taylor & Francis Group</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 210 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Chapman & Hall/CRC data mining and knowledge discovery series</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover ; Half title ; Published titles ; Title ; Copyright ; Contents ; Preface ; List of figures ; List of tables ; Glossary ; Chapter 1 introduction; 1.1 what is a social network</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.2 multiple aspects of relationships 1.3 formally representing social networks ; Chapter 2 the core model</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1 representing networks to understand their structures 2.2 building layered models ; 2.3 summary ; Chapter 3 background; 3.1 graph theory background</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.2 spectral graph theory 3.2.1 the unnormalized graph laplacian ; 3.2.2 the normalized graph laplacians ; 3.3 spectral pipeline</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4 spectral approaches to clustering 3.4.1 undirected spectral clustering algorithms ; 3.4.2 which laplacian clustering should be used</subfield></datafield><datafield tag="506" ind1="0" ind2=" "><subfield code="a">Open Access</subfield><subfield code="5">EbpS</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"Social Networks with Rich Edge Semantics introduces a new mechanism for representing social networks in which pairwise relationships can be drawn from a range of realistic possibilities, including different types of relationships, different strengths in the directions of a pair, positive and negative relationships, and relationships whose intensities change with time. For each possibility, the book shows how to model the social network using spectral embedding. It also shows how to compose the techniques so that multiple edge semantics can be modeled together, and the modeling techniques are then applied to a range of datasets. Features introduces the reader to difficulties with current social network analysis, and the need for richer representations of relationships among nodes, including accounting for intensity, direction, type, positive/negative, and changing intensities over time presents a novel mechanism to allow social networks with qualitatively different kinds of relationships to be described and analyzed includes extensions to the important technique of spectral embedding, shows that they are mathematically well motivated and proves that their results are appropriates hows how to exploit embeddings to understand structures within social networks, including subgroups, positional significance, link or edge prediction, consistency of role in different contexts, and net flow of properties through a node illustrates the use of the approach for real-world problems for online social networks, criminal and drug smuggling networks, and networks where the nodes are themselves groups suitable for researchers and students in social network research, data science, statistical learning, and related areas, this book will help to provide a deeper understanding of real-world social networks."--Provided by publisher</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social Media</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Médias sociaux</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Réseaux sociaux</subfield><subfield code="2">Modèles mathématiques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Web sémantique</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Internet: general works</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semantic Web</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">social media</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social media</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Social networks</subfield><subfield code="2">Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">BUSINESS & ECONOMICS</subfield><subfield code="2">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS</subfield><subfield code="2">Machine Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semantic Web</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social media</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social networks</subfield><subfield code="x">Mathematical models</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="653" ind1=" " ind2="6"><subfield code="a">Electronic books</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Skillicorn, David B.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">9781315390628</subfield><subfield code="z">9781315390611</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1578904</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EOAC</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033659204</subfield></datafield><datafield tag="542" ind1="1" ind2=" "><subfield code="f">This work is licensed under a Creative Commons license</subfield><subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield></datafield></record></collection> |
id | DE-604.BV048279039 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:00:49Z |
indexdate | 2024-07-10T09:34:00Z |
institution | BVB |
isbn | 1138032433 1315390590 1315390604 1315390612 1315390620 9781138032439 9781315390598 9781315390604 9781315390611 9781315390628 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033659204 |
oclc_num | 993984779 |
open_access_boolean | 1 |
owner | DE-355 DE-BY-UBR |
owner_facet | DE-355 DE-BY-UBR |
physical | 1 Online-Ressource (xx, 210 Seiten) |
psigel | ZDB-4-EOAC |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | CRC Press, Taylor & Francis Group |
record_format | marc |
series2 | Chapman & Hall/CRC data mining and knowledge discovery series |
spelling | Zheng, Quan (Telecommunications engineer) Verfasser aut Social networks with rich edge semantics Quan Zheng, David Skillicorn First edition Boca Raton, FL CRC Press, Taylor & Francis Group [2017] 1 Online-Ressource (xx, 210 Seiten) txt rdacontent c rdamedia cr rdacarrier Chapman & Hall/CRC data mining and knowledge discovery series Cover ; Half title ; Published titles ; Title ; Copyright ; Contents ; Preface ; List of figures ; List of tables ; Glossary ; Chapter 1 introduction; 1.1 what is a social network 1.2 multiple aspects of relationships 1.3 formally representing social networks ; Chapter 2 the core model 2.1 representing networks to understand their structures 2.2 building layered models ; 2.3 summary ; Chapter 3 background; 3.1 graph theory background 3.2 spectral graph theory 3.2.1 the unnormalized graph laplacian ; 3.2.2 the normalized graph laplacians ; 3.3 spectral pipeline 3.4 spectral approaches to clustering 3.4.1 undirected spectral clustering algorithms ; 3.4.2 which laplacian clustering should be used Open Access EbpS "Social Networks with Rich Edge Semantics introduces a new mechanism for representing social networks in which pairwise relationships can be drawn from a range of realistic possibilities, including different types of relationships, different strengths in the directions of a pair, positive and negative relationships, and relationships whose intensities change with time. For each possibility, the book shows how to model the social network using spectral embedding. It also shows how to compose the techniques so that multiple edge semantics can be modeled together, and the modeling techniques are then applied to a range of datasets. Features introduces the reader to difficulties with current social network analysis, and the need for richer representations of relationships among nodes, including accounting for intensity, direction, type, positive/negative, and changing intensities over time presents a novel mechanism to allow social networks with qualitatively different kinds of relationships to be described and analyzed includes extensions to the important technique of spectral embedding, shows that they are mathematically well motivated and proves that their results are appropriates hows how to exploit embeddings to understand structures within social networks, including subgroups, positional significance, link or edge prediction, consistency of role in different contexts, and net flow of properties through a node illustrates the use of the approach for real-world problems for online social networks, criminal and drug smuggling networks, and networks where the nodes are themselves groups suitable for researchers and students in social network research, data science, statistical learning, and related areas, this book will help to provide a deeper understanding of real-world social networks."--Provided by publisher Social Media Médias sociaux Réseaux sociaux Modèles mathématiques Web sémantique Internet: general works Semantic Web social media Social media Social networks Mathematical models BUSINESS & ECONOMICS Statistics COMPUTERS Machine Theory Electronic books Skillicorn, David B. Sonstige oth Erscheint auch als Druck-Ausgabe 9781315390628 9781315390611 https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1578904 Verlag kostenfrei Volltext This work is licensed under a Creative Commons license https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode |
spellingShingle | Zheng, Quan (Telecommunications engineer) Social networks with rich edge semantics Cover ; Half title ; Published titles ; Title ; Copyright ; Contents ; Preface ; List of figures ; List of tables ; Glossary ; Chapter 1 introduction; 1.1 what is a social network 1.2 multiple aspects of relationships 1.3 formally representing social networks ; Chapter 2 the core model 2.1 representing networks to understand their structures 2.2 building layered models ; 2.3 summary ; Chapter 3 background; 3.1 graph theory background 3.2 spectral graph theory 3.2.1 the unnormalized graph laplacian ; 3.2.2 the normalized graph laplacians ; 3.3 spectral pipeline 3.4 spectral approaches to clustering 3.4.1 undirected spectral clustering algorithms ; 3.4.2 which laplacian clustering should be used Social Media Médias sociaux Réseaux sociaux Modèles mathématiques Web sémantique Internet: general works Semantic Web social media Social media Social networks Mathematical models BUSINESS & ECONOMICS Statistics COMPUTERS Machine Theory |
title | Social networks with rich edge semantics |
title_auth | Social networks with rich edge semantics |
title_exact_search | Social networks with rich edge semantics |
title_exact_search_txtP | Social networks with rich edge semantics |
title_full | Social networks with rich edge semantics Quan Zheng, David Skillicorn |
title_fullStr | Social networks with rich edge semantics Quan Zheng, David Skillicorn |
title_full_unstemmed | Social networks with rich edge semantics Quan Zheng, David Skillicorn |
title_short | Social networks with rich edge semantics |
title_sort | social networks with rich edge semantics |
topic | Social Media Médias sociaux Réseaux sociaux Modèles mathématiques Web sémantique Internet: general works Semantic Web social media Social media Social networks Mathematical models BUSINESS & ECONOMICS Statistics COMPUTERS Machine Theory |
topic_facet | Social Media Médias sociaux Réseaux sociaux Web sémantique Internet: general works Semantic Web social media Social media Social networks BUSINESS & ECONOMICS COMPUTERS Social networks Mathematical models |
url | https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=1578904 |
work_keys_str_mv | AT zhengquan socialnetworkswithrichedgesemantics AT skillicorndavidb socialnetworkswithrichedgesemantics |