Stochastic Modeling of Food Insecurity:
Recent advances in food insecurity classification have made analytical approaches to predict and inform response to food crises possible. This paper develops a predictive, statistical framework to identify drivers of food insecurity risk with simulation capabilities for scenario analyses, risk asses...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2020
|
Schriftenreihe: | World Bank E-Library Archive
|
Online-Zugang: | kostenfrei |
Zusammenfassung: | Recent advances in food insecurity classification have made analytical approaches to predict and inform response to food crises possible. This paper develops a predictive, statistical framework to identify drivers of food insecurity risk with simulation capabilities for scenario analyses, risk assessment and forecasting purposes. It utilizes a panel vector-autoregression to model food insecurity distributions of 15 Sub-Saharan African countries between October 2009 and February 2019. Statistical variable selection methods are employed to identify the most important agronomic, weather, conflict and economic variables. The paper finds that food insecurity dynamics are asymmetric and past-dependent, with low insecurity states more likely to transition to high insecurity states than vice versa. Conflict variables are more relevant for dynamics in highly critical stages, while agronomic and weather variables are more important for less critical states. Food prices are predictive for all cases. A Bayesian extension is introduced to incorporate expert opinions through the use of priors, which lead to significant improvements in model performance |
Beschreibung: | 1 Online-Ressource (30 Seiten) |
DOI: | 10.1596/1813-9450-9413 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048274852 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220609s2020 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-9413 |2 doi | |
035 | |a (ZDB-1-WBA)NLM011157739 | ||
035 | |a (OCoLC)1334037152 | ||
035 | |a (DE-599)GBVNLM011157739 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Wang, Dieter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Stochastic Modeling of Food Insecurity |c Dieter Wang |
264 | 1 | |a Washington, D.C |b The World Bank |c 2020 | |
300 | |a 1 Online-Ressource (30 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Bank E-Library Archive | |
520 | |a Recent advances in food insecurity classification have made analytical approaches to predict and inform response to food crises possible. This paper develops a predictive, statistical framework to identify drivers of food insecurity risk with simulation capabilities for scenario analyses, risk assessment and forecasting purposes. It utilizes a panel vector-autoregression to model food insecurity distributions of 15 Sub-Saharan African countries between October 2009 and February 2019. Statistical variable selection methods are employed to identify the most important agronomic, weather, conflict and economic variables. The paper finds that food insecurity dynamics are asymmetric and past-dependent, with low insecurity states more likely to transition to high insecurity states than vice versa. Conflict variables are more relevant for dynamics in highly critical stages, while agronomic and weather variables are more important for less critical states. Food prices are predictive for all cases. A Bayesian extension is introduced to incorporate expert opinions through the use of priors, which lead to significant improvements in model performance | ||
700 | 1 | |a Andree, Bo Pieter Johannes |4 oth | |
700 | 1 | |a Chamorro, Andres Fernando |4 oth | |
700 | 1 | |a Girouard Spencer, Phoebe |4 oth | |
700 | 1 | |a Wang, Dieter |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Wang, Dieter |t Stochastic Modeling of Food Insecurity |d Washington, D.C : The World Bank, 2020 |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-9413 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033655047 |
Datensatz im Suchindex
_version_ | 1824556227080749059 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Wang, Dieter |
author_facet | Wang, Dieter |
author_role | aut |
author_sort | Wang, Dieter |
author_variant | d w dw |
building | Verbundindex |
bvnumber | BV048274852 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)NLM011157739 (OCoLC)1334037152 (DE-599)GBVNLM011157739 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-9413 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048274852</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220609s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-9413</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)NLM011157739</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1334037152</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLM011157739</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Dieter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic Modeling of Food Insecurity</subfield><subfield code="c">Dieter Wang</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (30 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Bank E-Library Archive</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Recent advances in food insecurity classification have made analytical approaches to predict and inform response to food crises possible. This paper develops a predictive, statistical framework to identify drivers of food insecurity risk with simulation capabilities for scenario analyses, risk assessment and forecasting purposes. It utilizes a panel vector-autoregression to model food insecurity distributions of 15 Sub-Saharan African countries between October 2009 and February 2019. Statistical variable selection methods are employed to identify the most important agronomic, weather, conflict and economic variables. The paper finds that food insecurity dynamics are asymmetric and past-dependent, with low insecurity states more likely to transition to high insecurity states than vice versa. Conflict variables are more relevant for dynamics in highly critical stages, while agronomic and weather variables are more important for less critical states. Food prices are predictive for all cases. A Bayesian extension is introduced to incorporate expert opinions through the use of priors, which lead to significant improvements in model performance</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andree, Bo Pieter Johannes</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chamorro, Andres Fernando</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Girouard Spencer, Phoebe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dieter</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Wang, Dieter</subfield><subfield code="t">Stochastic Modeling of Food Insecurity</subfield><subfield code="d">Washington, D.C : The World Bank, 2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-9413</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033655047</subfield></datafield></record></collection> |
id | DE-604.BV048274852 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:00:12Z |
indexdate | 2025-02-20T07:20:12Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033655047 |
oclc_num | 1334037152 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (30 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | The World Bank |
record_format | marc |
series2 | World Bank E-Library Archive |
spellingShingle | Wang, Dieter Stochastic Modeling of Food Insecurity |
title | Stochastic Modeling of Food Insecurity |
title_auth | Stochastic Modeling of Food Insecurity |
title_exact_search | Stochastic Modeling of Food Insecurity |
title_exact_search_txtP | Stochastic Modeling of Food Insecurity |
title_full | Stochastic Modeling of Food Insecurity Dieter Wang |
title_fullStr | Stochastic Modeling of Food Insecurity Dieter Wang |
title_full_unstemmed | Stochastic Modeling of Food Insecurity Dieter Wang |
title_short | Stochastic Modeling of Food Insecurity |
title_sort | stochastic modeling of food insecurity |
url | https://doi.org/10.1596/1813-9450-9413 |
work_keys_str_mv | AT wangdieter stochasticmodelingoffoodinsecurity AT andreebopieterjohannes stochasticmodelingoffoodinsecurity AT chamorroandresfernando stochasticmodelingoffoodinsecurity AT girouardspencerphoebe stochasticmodelingoffoodinsecurity |