Predicting Food Crises:
Globally, more than 130 million people are estimated to be in food crisis. These humanitarian disasters are associated with severe impacts on livelihoods that can reverse years of development gains. The existing outlooks of crisis-affected populations rely on expert assessment of evidence and are li...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2020
|
Schriftenreihe: | World Bank E-Library Archive
|
Online-Zugang: | Volltext |
Zusammenfassung: | Globally, more than 130 million people are estimated to be in food crisis. These humanitarian disasters are associated with severe impacts on livelihoods that can reverse years of development gains. The existing outlooks of crisis-affected populations rely on expert assessment of evidence and are limited in their temporal frequency and ability to look beyond several months. This paper presents a statistical foresting approach to predict the outbreak of food crises with sufficient lead time for preventive action. Different use cases are explored related to possible alternative targeting policies and the levels at which finance is typically unlocked. The results indicate that, particularly at longer forecasting horizons, the statistical predictions compare favorably to expert-based outlooks. The paper concludes that statistical models demonstrate good ability to detect future outbreaks of food crises and that using statistical forecasting approaches may help increase lead time for action |
Beschreibung: | 1 Online-Ressource (35 Seiten) |
DOI: | 10.1596/1813-9450-9412 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048274851 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220609s2020 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-9412 |2 doi | |
035 | |a (ZDB-1-WBA)NLM011157720 | ||
035 | |a (OCoLC)1334037032 | ||
035 | |a (DE-599)GBVNLM011157720 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Andree, Bo Pieter Johannes |e Verfasser |4 aut | |
245 | 1 | 0 | |a Predicting Food Crises |c Bo Pieter Johannes Andree |
264 | 1 | |a Washington, D.C |b The World Bank |c 2020 | |
300 | |a 1 Online-Ressource (35 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Bank E-Library Archive | |
520 | |a Globally, more than 130 million people are estimated to be in food crisis. These humanitarian disasters are associated with severe impacts on livelihoods that can reverse years of development gains. The existing outlooks of crisis-affected populations rely on expert assessment of evidence and are limited in their temporal frequency and ability to look beyond several months. This paper presents a statistical foresting approach to predict the outbreak of food crises with sufficient lead time for preventive action. Different use cases are explored related to possible alternative targeting policies and the levels at which finance is typically unlocked. The results indicate that, particularly at longer forecasting horizons, the statistical predictions compare favorably to expert-based outlooks. The paper concludes that statistical models demonstrate good ability to detect future outbreaks of food crises and that using statistical forecasting approaches may help increase lead time for action | ||
700 | 1 | |a Andree, Bo Pieter Johannes |4 oth | |
700 | 1 | |a Chamorro, Andres Fernando |4 oth | |
700 | 1 | |a Kraay, Aart |4 oth | |
700 | 1 | |a Spencer, Phoebe |4 oth | |
700 | 1 | |a Wang, Dieter |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Andree, Bo Pieter Johannes |t Predicting Food Crises |d Washington, D.C : The World Bank, 2020 |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-9412 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033655046 |
Datensatz im Suchindex
_version_ | 1812671828236173312 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Andree, Bo Pieter Johannes |
author_facet | Andree, Bo Pieter Johannes |
author_role | aut |
author_sort | Andree, Bo Pieter Johannes |
author_variant | b p j a bpj bpja |
building | Verbundindex |
bvnumber | BV048274851 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)NLM011157720 (OCoLC)1334037032 (DE-599)GBVNLM011157720 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-9412 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048274851</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220609s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-9412</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)NLM011157720</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1334037032</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLM011157720</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andree, Bo Pieter Johannes</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting Food Crises</subfield><subfield code="c">Bo Pieter Johannes Andree</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (35 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Bank E-Library Archive</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Globally, more than 130 million people are estimated to be in food crisis. These humanitarian disasters are associated with severe impacts on livelihoods that can reverse years of development gains. The existing outlooks of crisis-affected populations rely on expert assessment of evidence and are limited in their temporal frequency and ability to look beyond several months. This paper presents a statistical foresting approach to predict the outbreak of food crises with sufficient lead time for preventive action. Different use cases are explored related to possible alternative targeting policies and the levels at which finance is typically unlocked. The results indicate that, particularly at longer forecasting horizons, the statistical predictions compare favorably to expert-based outlooks. The paper concludes that statistical models demonstrate good ability to detect future outbreaks of food crises and that using statistical forecasting approaches may help increase lead time for action</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Andree, Bo Pieter Johannes</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chamorro, Andres Fernando</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kraay, Aart</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Spencer, Phoebe</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Dieter</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Andree, Bo Pieter Johannes</subfield><subfield code="t">Predicting Food Crises</subfield><subfield code="d">Washington, D.C : The World Bank, 2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-9412</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033655046</subfield></datafield></record></collection> |
id | DE-604.BV048274851 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:00:12Z |
indexdate | 2024-10-12T04:02:46Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033655046 |
oclc_num | 1334037032 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (35 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | The World Bank |
record_format | marc |
series2 | World Bank E-Library Archive |
spellingShingle | Andree, Bo Pieter Johannes Predicting Food Crises |
title | Predicting Food Crises |
title_auth | Predicting Food Crises |
title_exact_search | Predicting Food Crises |
title_exact_search_txtP | Predicting Food Crises |
title_full | Predicting Food Crises Bo Pieter Johannes Andree |
title_fullStr | Predicting Food Crises Bo Pieter Johannes Andree |
title_full_unstemmed | Predicting Food Crises Bo Pieter Johannes Andree |
title_short | Predicting Food Crises |
title_sort | predicting food crises |
url | https://doi.org/10.1596/1813-9450-9412 |
work_keys_str_mv | AT andreebopieterjohannes predictingfoodcrises AT chamorroandresfernando predictingfoodcrises AT kraayaart predictingfoodcrises AT spencerphoebe predictingfoodcrises AT wangdieter predictingfoodcrises |