Using Machine Learning to Assess Yield Impacts of Crop Rotation: Combining Satellite and Statistical Data for Ukraine
To overcome the constraints for policy and practice posed by limited availability of data on crop rotation, this paper applies machine learning to freely available satellite imagery to identify the rotational practices of more than 7,000 villages in Ukraine. Rotation effects estimated based on combi...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2020
|
Schriftenreihe: | World Bank E-Library Archive
|
Online-Zugang: | Volltext |
Zusammenfassung: | To overcome the constraints for policy and practice posed by limited availability of data on crop rotation, this paper applies machine learning to freely available satellite imagery to identify the rotational practices of more than 7,000 villages in Ukraine. Rotation effects estimated based on combining these data with survey-based yield information point toward statistically significant and economically meaningful effects that differ from what has been reported in the literature, highlighting the value of this approach. Independently derived indices of vegetative development and soil water content produce similar results, not only supporting the robustness of the results, but also suggesting that the opportunities for spatial and temporal disaggregation inherent in such data offer tremendous unexploited opportunities for policy-relevant analysis |
Beschreibung: | 1 Online-Ressource (29 Seiten) |
DOI: | 10.1596/1813-9450-9306 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048274746 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220609s2020 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-9306 |2 doi | |
035 | |a (ZDB-1-WBA)NLM011156678 | ||
035 | |a (OCoLC)1334038111 | ||
035 | |a (DE-599)GBVNLM011156678 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Deininger, Klaus |e Verfasser |4 aut | |
245 | 1 | 0 | |a Using Machine Learning to Assess Yield Impacts of Crop Rotation |b Combining Satellite and Statistical Data for Ukraine |c Deininger, Klaus |
264 | 1 | |a Washington, D.C |b The World Bank |c 2020 | |
300 | |a 1 Online-Ressource (29 Seiten) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Bank E-Library Archive | |
520 | |a To overcome the constraints for policy and practice posed by limited availability of data on crop rotation, this paper applies machine learning to freely available satellite imagery to identify the rotational practices of more than 7,000 villages in Ukraine. Rotation effects estimated based on combining these data with survey-based yield information point toward statistically significant and economically meaningful effects that differ from what has been reported in the literature, highlighting the value of this approach. Independently derived indices of vegetative development and soil water content produce similar results, not only supporting the robustness of the results, but also suggesting that the opportunities for spatial and temporal disaggregation inherent in such data offer tremendous unexploited opportunities for policy-relevant analysis | ||
700 | 1 | |a Ali, Daniel Ayalew |4 oth | |
700 | 1 | |a Deininger, Klaus |4 oth | |
700 | 1 | |a Kussul, Nataliia |4 oth | |
700 | 1 | |a Lavreniuk, Mykola |4 oth | |
700 | 1 | |a Nivievskyi, Oleg |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Deininger, Klaus |t Using Machine Learning to Assess Yield Impacts of Crop Rotation: Combining Satellite and Statistical Data for Ukraine |d Washington, D.C : The World Bank, 2020 |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-9306 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033654941 |
Datensatz im Suchindex
_version_ | 1812671828203667456 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Deininger, Klaus |
author_facet | Deininger, Klaus |
author_role | aut |
author_sort | Deininger, Klaus |
author_variant | k d kd |
building | Verbundindex |
bvnumber | BV048274746 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)NLM011156678 (OCoLC)1334038111 (DE-599)GBVNLM011156678 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-9306 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048274746</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220609s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-9306</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)NLM011156678</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1334038111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLM011156678</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Deininger, Klaus</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Using Machine Learning to Assess Yield Impacts of Crop Rotation</subfield><subfield code="b">Combining Satellite and Statistical Data for Ukraine</subfield><subfield code="c">Deininger, Klaus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (29 Seiten)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Bank E-Library Archive</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">To overcome the constraints for policy and practice posed by limited availability of data on crop rotation, this paper applies machine learning to freely available satellite imagery to identify the rotational practices of more than 7,000 villages in Ukraine. Rotation effects estimated based on combining these data with survey-based yield information point toward statistically significant and economically meaningful effects that differ from what has been reported in the literature, highlighting the value of this approach. Independently derived indices of vegetative development and soil water content produce similar results, not only supporting the robustness of the results, but also suggesting that the opportunities for spatial and temporal disaggregation inherent in such data offer tremendous unexploited opportunities for policy-relevant analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ali, Daniel Ayalew</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deininger, Klaus</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kussul, Nataliia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lavreniuk, Mykola</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nivievskyi, Oleg</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Deininger, Klaus</subfield><subfield code="t">Using Machine Learning to Assess Yield Impacts of Crop Rotation: Combining Satellite and Statistical Data for Ukraine</subfield><subfield code="d">Washington, D.C : The World Bank, 2020</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-9306</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033654941</subfield></datafield></record></collection> |
id | DE-604.BV048274746 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:00:12Z |
indexdate | 2024-10-12T04:02:46Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033654941 |
oclc_num | 1334038111 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (29 Seiten) |
psigel | ZDB-1-WBA |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | The World Bank |
record_format | marc |
series2 | World Bank E-Library Archive |
spellingShingle | Deininger, Klaus Using Machine Learning to Assess Yield Impacts of Crop Rotation Combining Satellite and Statistical Data for Ukraine |
title | Using Machine Learning to Assess Yield Impacts of Crop Rotation Combining Satellite and Statistical Data for Ukraine |
title_auth | Using Machine Learning to Assess Yield Impacts of Crop Rotation Combining Satellite and Statistical Data for Ukraine |
title_exact_search | Using Machine Learning to Assess Yield Impacts of Crop Rotation Combining Satellite and Statistical Data for Ukraine |
title_exact_search_txtP | Using Machine Learning to Assess Yield Impacts of Crop Rotation Combining Satellite and Statistical Data for Ukraine |
title_full | Using Machine Learning to Assess Yield Impacts of Crop Rotation Combining Satellite and Statistical Data for Ukraine Deininger, Klaus |
title_fullStr | Using Machine Learning to Assess Yield Impacts of Crop Rotation Combining Satellite and Statistical Data for Ukraine Deininger, Klaus |
title_full_unstemmed | Using Machine Learning to Assess Yield Impacts of Crop Rotation Combining Satellite and Statistical Data for Ukraine Deininger, Klaus |
title_short | Using Machine Learning to Assess Yield Impacts of Crop Rotation |
title_sort | using machine learning to assess yield impacts of crop rotation combining satellite and statistical data for ukraine |
title_sub | Combining Satellite and Statistical Data for Ukraine |
url | https://doi.org/10.1596/1813-9450-9306 |
work_keys_str_mv | AT deiningerklaus usingmachinelearningtoassessyieldimpactsofcroprotationcombiningsatelliteandstatisticaldataforukraine AT alidanielayalew usingmachinelearningtoassessyieldimpactsofcroprotationcombiningsatelliteandstatisticaldataforukraine AT kussulnataliia usingmachinelearningtoassessyieldimpactsofcroprotationcombiningsatelliteandstatisticaldataforukraine AT lavreniukmykola usingmachinelearningtoassessyieldimpactsofcroprotationcombiningsatelliteandstatisticaldataforukraine AT nivievskyioleg usingmachinelearningtoassessyieldimpactsofcroprotationcombiningsatelliteandstatisticaldataforukraine |