Cities, Crowding, and the Coronavirus: Predicting Contagion Risk Hotspots
They are forced to leave their home every day to go to work, buy groceries, and do laundry. This is especially true in low-income neighborhoods of developing countries - many of which are slums and informal settlements. In fact, 60 percent of Africa's urban population is packed into slums - a f...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2020
|
Schriftenreihe: | World Bank E-Library Archive
|
Online-Zugang: | Volltext |
Zusammenfassung: | They are forced to leave their home every day to go to work, buy groceries, and do laundry. This is especially true in low-income neighborhoods of developing countries - many of which are slums and informal settlements. In fact, 60 percent of Africa's urban population is packed into slums - a far larger share than the average 34 percent seen in other developing countries (United Nations 2015). With people tightly packed together, the resulting crowding increases contagion risk from the coronavirus |
Beschreibung: | 1 Online-Ressource |
DOI: | 10.1596/33648 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048273167 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220609s2020 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/33648 |2 doi | |
035 | |a (ZDB-1-WBA)NLM011140909 | ||
035 | |a (OCoLC)1334050015 | ||
035 | |a (DE-599)GBVNLM011140909 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Bhardwaj, Gaurav |e Verfasser |4 aut | |
245 | 1 | 0 | |a Cities, Crowding, and the Coronavirus |b Predicting Contagion Risk Hotspots |c Gaurav Bhardwaj |
264 | 1 | |a Washington, D.C |b The World Bank |c 2020 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Bank E-Library Archive | |
520 | |a They are forced to leave their home every day to go to work, buy groceries, and do laundry. This is especially true in low-income neighborhoods of developing countries - many of which are slums and informal settlements. In fact, 60 percent of Africa's urban population is packed into slums - a far larger share than the average 34 percent seen in other developing countries (United Nations 2015). With people tightly packed together, the resulting crowding increases contagion risk from the coronavirus | ||
700 | 1 | |a Bhardwaj, Gaurav |4 oth | |
700 | 1 | |a Esch, Thomas |4 oth | |
700 | 1 | |a Lall, Somik V. |4 oth | |
700 | 1 | |a Marconcini, Mattia |4 oth | |
700 | 1 | |a Soppelsa, Maria Edisa |4 oth | |
700 | 1 | |a Wahba, Sameh |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1596/33648 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033653362 |
Datensatz im Suchindex
_version_ | 1812671814504022016 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Bhardwaj, Gaurav |
author_facet | Bhardwaj, Gaurav |
author_role | aut |
author_sort | Bhardwaj, Gaurav |
author_variant | g b gb |
building | Verbundindex |
bvnumber | BV048273167 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)NLM011140909 (OCoLC)1334050015 (DE-599)GBVNLM011140909 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/33648 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048273167</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220609s2020 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/33648</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)NLM011140909</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1334050015</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLM011140909</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bhardwaj, Gaurav</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cities, Crowding, and the Coronavirus</subfield><subfield code="b">Predicting Contagion Risk Hotspots</subfield><subfield code="c">Gaurav Bhardwaj</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Bank E-Library Archive</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">They are forced to leave their home every day to go to work, buy groceries, and do laundry. This is especially true in low-income neighborhoods of developing countries - many of which are slums and informal settlements. In fact, 60 percent of Africa's urban population is packed into slums - a far larger share than the average 34 percent seen in other developing countries (United Nations 2015). With people tightly packed together, the resulting crowding increases contagion risk from the coronavirus</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhardwaj, Gaurav</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Esch, Thomas</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lall, Somik V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marconcini, Mattia</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Soppelsa, Maria Edisa</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wahba, Sameh</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/33648</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033653362</subfield></datafield></record></collection> |
id | DE-604.BV048273167 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:00:08Z |
indexdate | 2024-10-12T04:02:33Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033653362 |
oclc_num | 1334050015 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource |
psigel | ZDB-1-WBA |
publishDate | 2020 |
publishDateSearch | 2020 |
publishDateSort | 2020 |
publisher | The World Bank |
record_format | marc |
series2 | World Bank E-Library Archive |
spellingShingle | Bhardwaj, Gaurav Cities, Crowding, and the Coronavirus Predicting Contagion Risk Hotspots |
title | Cities, Crowding, and the Coronavirus Predicting Contagion Risk Hotspots |
title_auth | Cities, Crowding, and the Coronavirus Predicting Contagion Risk Hotspots |
title_exact_search | Cities, Crowding, and the Coronavirus Predicting Contagion Risk Hotspots |
title_exact_search_txtP | Cities, Crowding, and the Coronavirus Predicting Contagion Risk Hotspots |
title_full | Cities, Crowding, and the Coronavirus Predicting Contagion Risk Hotspots Gaurav Bhardwaj |
title_fullStr | Cities, Crowding, and the Coronavirus Predicting Contagion Risk Hotspots Gaurav Bhardwaj |
title_full_unstemmed | Cities, Crowding, and the Coronavirus Predicting Contagion Risk Hotspots Gaurav Bhardwaj |
title_short | Cities, Crowding, and the Coronavirus |
title_sort | cities crowding and the coronavirus predicting contagion risk hotspots |
title_sub | Predicting Contagion Risk Hotspots |
url | https://doi.org/10.1596/33648 |
work_keys_str_mv | AT bhardwajgaurav citiescrowdingandthecoronaviruspredictingcontagionriskhotspots AT eschthomas citiescrowdingandthecoronaviruspredictingcontagionriskhotspots AT lallsomikv citiescrowdingandthecoronaviruspredictingcontagionriskhotspots AT marconcinimattia citiescrowdingandthecoronaviruspredictingcontagionriskhotspots AT soppelsamariaedisa citiescrowdingandthecoronaviruspredictingcontagionriskhotspots AT wahbasameh citiescrowdingandthecoronaviruspredictingcontagionriskhotspots |