Approximating Income Distribution Dynamics Using Aggregate Data:
This paper proposes a methodology to approximate individual income distribution dynamics using only time series data on aggregate moments of the income distribution. Under the assumption that individual incomes follow a lognormal autoregressive process, this paper shows that the evolution over time...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2017
|
Schriftenreihe: | World Bank E-Library Archive
|
Online-Zugang: | Volltext |
Zusammenfassung: | This paper proposes a methodology to approximate individual income distribution dynamics using only time series data on aggregate moments of the income distribution. Under the assumption that individual incomes follow a lognormal autoregressive process, this paper shows that the evolution over time of the mean and standard deviation of log income across individuals provides sufficient information to place upper and lower bounds on the degree of mobility in the income distribution. The paper demonstrates that these bounds are reasonably informative, using the U.S. Panel Study of Income Dynamics where the panel structure of the data allows us to compare measures of mobility directly estimated from the micro data with approximations based only on aggregate data. Bounds on mobility are estimated for a large cross-section of countries, using data on aggregate moments of the income distribution available in the World Wealth and Income Database and the World Bank's PovcalNet database. The estimated bounds on mobility imply that conventional anonymous growth rates of the bottom 40 percent (top 10 percent) that do not account for mobility substantially understate (overstate) the expected growth performance of those initially in the bottom 40 percent (top 10 percent) |
Beschreibung: | 1 Online-Ressource (50 p) |
DOI: | 10.1596/1813-9450-8123 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048269716 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220609s2017 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-8123 |2 doi | |
035 | |a (ZDB-1-WBA)NLM010469796 | ||
035 | |a (OCoLC)1334032438 | ||
035 | |a (DE-599)GBVNLM010469796 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Kraay, Aart |e Verfasser |4 aut | |
245 | 1 | 0 | |a Approximating Income Distribution Dynamics Using Aggregate Data |c Aart Kraay |
264 | 1 | |a Washington, D.C |b The World Bank |c 2017 | |
300 | |a 1 Online-Ressource (50 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Bank E-Library Archive | |
520 | |a This paper proposes a methodology to approximate individual income distribution dynamics using only time series data on aggregate moments of the income distribution. Under the assumption that individual incomes follow a lognormal autoregressive process, this paper shows that the evolution over time of the mean and standard deviation of log income across individuals provides sufficient information to place upper and lower bounds on the degree of mobility in the income distribution. The paper demonstrates that these bounds are reasonably informative, using the U.S. Panel Study of Income Dynamics where the panel structure of the data allows us to compare measures of mobility directly estimated from the micro data with approximations based only on aggregate data. Bounds on mobility are estimated for a large cross-section of countries, using data on aggregate moments of the income distribution available in the World Wealth and Income Database and the World Bank's PovcalNet database. The estimated bounds on mobility imply that conventional anonymous growth rates of the bottom 40 percent (top 10 percent) that do not account for mobility substantially understate (overstate) the expected growth performance of those initially in the bottom 40 percent (top 10 percent) | ||
700 | 1 | |a Van der Weide, Roy |4 oth | |
700 | 1 | |a Kraay, Aart |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Kraay, Aart |t Approximating Income Distribution Dynamics Using Aggregate Data |d Washington, D.C : The World Bank, 2017 |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-8123 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033649911 |
Datensatz im Suchindex
_version_ | 1812671777964294144 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Kraay, Aart |
author_facet | Kraay, Aart |
author_role | aut |
author_sort | Kraay, Aart |
author_variant | a k ak |
building | Verbundindex |
bvnumber | BV048269716 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)NLM010469796 (OCoLC)1334032438 (DE-599)GBVNLM010469796 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-8123 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048269716</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220609s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-8123</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)NLM010469796</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1334032438</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLM010469796</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kraay, Aart</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximating Income Distribution Dynamics Using Aggregate Data</subfield><subfield code="c">Aart Kraay</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (50 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Bank E-Library Archive</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a methodology to approximate individual income distribution dynamics using only time series data on aggregate moments of the income distribution. Under the assumption that individual incomes follow a lognormal autoregressive process, this paper shows that the evolution over time of the mean and standard deviation of log income across individuals provides sufficient information to place upper and lower bounds on the degree of mobility in the income distribution. The paper demonstrates that these bounds are reasonably informative, using the U.S. Panel Study of Income Dynamics where the panel structure of the data allows us to compare measures of mobility directly estimated from the micro data with approximations based only on aggregate data. Bounds on mobility are estimated for a large cross-section of countries, using data on aggregate moments of the income distribution available in the World Wealth and Income Database and the World Bank's PovcalNet database. The estimated bounds on mobility imply that conventional anonymous growth rates of the bottom 40 percent (top 10 percent) that do not account for mobility substantially understate (overstate) the expected growth performance of those initially in the bottom 40 percent (top 10 percent)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Van der Weide, Roy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kraay, Aart</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Kraay, Aart</subfield><subfield code="t">Approximating Income Distribution Dynamics Using Aggregate Data</subfield><subfield code="d">Washington, D.C : The World Bank, 2017</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-8123</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033649911</subfield></datafield></record></collection> |
id | DE-604.BV048269716 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:00:01Z |
indexdate | 2024-10-12T04:01:58Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033649911 |
oclc_num | 1334032438 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (50 p) |
psigel | ZDB-1-WBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | The World Bank |
record_format | marc |
series2 | World Bank E-Library Archive |
spellingShingle | Kraay, Aart Approximating Income Distribution Dynamics Using Aggregate Data |
title | Approximating Income Distribution Dynamics Using Aggregate Data |
title_auth | Approximating Income Distribution Dynamics Using Aggregate Data |
title_exact_search | Approximating Income Distribution Dynamics Using Aggregate Data |
title_exact_search_txtP | Approximating Income Distribution Dynamics Using Aggregate Data |
title_full | Approximating Income Distribution Dynamics Using Aggregate Data Aart Kraay |
title_fullStr | Approximating Income Distribution Dynamics Using Aggregate Data Aart Kraay |
title_full_unstemmed | Approximating Income Distribution Dynamics Using Aggregate Data Aart Kraay |
title_short | Approximating Income Distribution Dynamics Using Aggregate Data |
title_sort | approximating income distribution dynamics using aggregate data |
url | https://doi.org/10.1596/1813-9450-8123 |
work_keys_str_mv | AT kraayaart approximatingincomedistributiondynamicsusingaggregatedata AT vanderweideroy approximatingincomedistributiondynamicsusingaggregatedata |