Spatial Autocorrelation Panel Regression: Agricultural Production and Transport Connectivity
Spatial analysis in economics is becoming increasingly important as more spatial data and innovative data mining technologies are developed. Even in Africa, where data often crucially lack quality analysis, a variety of spatial data have recently been developed, such as highly disaggregated crop pro...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2017
|
Schriftenreihe: | World Bank E-Library Archive
|
Online-Zugang: | Volltext |
Zusammenfassung: | Spatial analysis in economics is becoming increasingly important as more spatial data and innovative data mining technologies are developed. Even in Africa, where data often crucially lack quality analysis, a variety of spatial data have recently been developed, such as highly disaggregated crop production maps. Taking advantage of the historical event that rail operations were ceased in Ethiopia, this paper examines the relationship between agricultural production and transport connectivity, especially port accessibility, which is mainly characterized by rail transport. To deal with endogeneity of infrastructure placement and autocorrelation in spatial data, the spatial autocorrelation panel regression model is applied. It is found that agricultural production decreases with transport costs to the port: the elasticity is estimated at -0.094 to -0.143, depending on model specification. The estimated autocorrelation parameters also support the finding that although farmers in close locations share a certain common production pattern, external shocks, such as drought and flood, have spillover effects over neighboring areas |
Beschreibung: | 1 Online-Ressource (24 p) |
DOI: | 10.1596/1813-9450-8089 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048269650 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220609s2017 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-8089 |2 doi | |
035 | |a (ZDB-1-WBA)NLM010469133 | ||
035 | |a (OCoLC)1334030814 | ||
035 | |a (DE-599)GBVNLM010469133 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Iimi, Atsushi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Spatial Autocorrelation Panel Regression |b Agricultural Production and Transport Connectivity |c Atsushi Iimi |
264 | 1 | |a Washington, D.C |b The World Bank |c 2017 | |
300 | |a 1 Online-Ressource (24 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Bank E-Library Archive | |
520 | |a Spatial analysis in economics is becoming increasingly important as more spatial data and innovative data mining technologies are developed. Even in Africa, where data often crucially lack quality analysis, a variety of spatial data have recently been developed, such as highly disaggregated crop production maps. Taking advantage of the historical event that rail operations were ceased in Ethiopia, this paper examines the relationship between agricultural production and transport connectivity, especially port accessibility, which is mainly characterized by rail transport. To deal with endogeneity of infrastructure placement and autocorrelation in spatial data, the spatial autocorrelation panel regression model is applied. It is found that agricultural production decreases with transport costs to the port: the elasticity is estimated at -0.094 to -0.143, depending on model specification. The estimated autocorrelation parameters also support the finding that although farmers in close locations share a certain common production pattern, external shocks, such as drought and flood, have spillover effects over neighboring areas | ||
700 | 1 | |a You, Liangzhi |4 oth | |
700 | 1 | |a Wood-Sichra, Ulrike |4 oth | |
700 | 1 | |a Iimi, Atsushi |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Iimi, Atsushi |t Spatial Autocorrelation Panel Regression: Agricultural Production and Transport Connectivity |d Washington, D.C : The World Bank, 2017 |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-8089 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033649845 |
Datensatz im Suchindex
_version_ | 1824556190072307712 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Iimi, Atsushi |
author_facet | Iimi, Atsushi |
author_role | aut |
author_sort | Iimi, Atsushi |
author_variant | a i ai |
building | Verbundindex |
bvnumber | BV048269650 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)NLM010469133 (OCoLC)1334030814 (DE-599)GBVNLM010469133 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-8089 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048269650</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220609s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-8089</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)NLM010469133</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1334030814</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLM010469133</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Iimi, Atsushi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spatial Autocorrelation Panel Regression</subfield><subfield code="b">Agricultural Production and Transport Connectivity</subfield><subfield code="c">Atsushi Iimi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (24 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Bank E-Library Archive</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Spatial analysis in economics is becoming increasingly important as more spatial data and innovative data mining technologies are developed. Even in Africa, where data often crucially lack quality analysis, a variety of spatial data have recently been developed, such as highly disaggregated crop production maps. Taking advantage of the historical event that rail operations were ceased in Ethiopia, this paper examines the relationship between agricultural production and transport connectivity, especially port accessibility, which is mainly characterized by rail transport. To deal with endogeneity of infrastructure placement and autocorrelation in spatial data, the spatial autocorrelation panel regression model is applied. It is found that agricultural production decreases with transport costs to the port: the elasticity is estimated at -0.094 to -0.143, depending on model specification. The estimated autocorrelation parameters also support the finding that although farmers in close locations share a certain common production pattern, external shocks, such as drought and flood, have spillover effects over neighboring areas</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">You, Liangzhi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wood-Sichra, Ulrike</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Iimi, Atsushi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Iimi, Atsushi</subfield><subfield code="t">Spatial Autocorrelation Panel Regression: Agricultural Production and Transport Connectivity</subfield><subfield code="d">Washington, D.C : The World Bank, 2017</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-8089</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033649845</subfield></datafield></record></collection> |
id | DE-604.BV048269650 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:00:01Z |
indexdate | 2025-02-20T07:19:37Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033649845 |
oclc_num | 1334030814 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (24 p) |
psigel | ZDB-1-WBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | The World Bank |
record_format | marc |
series2 | World Bank E-Library Archive |
spellingShingle | Iimi, Atsushi Spatial Autocorrelation Panel Regression Agricultural Production and Transport Connectivity |
title | Spatial Autocorrelation Panel Regression Agricultural Production and Transport Connectivity |
title_auth | Spatial Autocorrelation Panel Regression Agricultural Production and Transport Connectivity |
title_exact_search | Spatial Autocorrelation Panel Regression Agricultural Production and Transport Connectivity |
title_exact_search_txtP | Spatial Autocorrelation Panel Regression Agricultural Production and Transport Connectivity |
title_full | Spatial Autocorrelation Panel Regression Agricultural Production and Transport Connectivity Atsushi Iimi |
title_fullStr | Spatial Autocorrelation Panel Regression Agricultural Production and Transport Connectivity Atsushi Iimi |
title_full_unstemmed | Spatial Autocorrelation Panel Regression Agricultural Production and Transport Connectivity Atsushi Iimi |
title_short | Spatial Autocorrelation Panel Regression |
title_sort | spatial autocorrelation panel regression agricultural production and transport connectivity |
title_sub | Agricultural Production and Transport Connectivity |
url | https://doi.org/10.1596/1813-9450-8089 |
work_keys_str_mv | AT iimiatsushi spatialautocorrelationpanelregressionagriculturalproductionandtransportconnectivity AT youliangzhi spatialautocorrelationpanelregressionagriculturalproductionandtransportconnectivity AT woodsichraulrike spatialautocorrelationpanelregressionagriculturalproductionandtransportconnectivity |