Predicting Conflict:
This paper studies the performance of alternative prediction models for conflict. The analysis contrasts the performance of conventional approaches based on predicted probabilities generated by binary response regressions and random forests with two unconventional classification algorithms. The unco...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2017
|
Schriftenreihe: | World Bank E-Library Archive
|
Online-Zugang: | Volltext |
Zusammenfassung: | This paper studies the performance of alternative prediction models for conflict. The analysis contrasts the performance of conventional approaches based on predicted probabilities generated by binary response regressions and random forests with two unconventional classification algorithms. The unconventional algorithms are calibrated specifically to minimize a prediction loss function penalizing Type 1 and Type 2 errors: (1) an algorithm that selects linear combinations of correlates of conflict to minimize the prediction loss function, and (2) an algorithm that chooses a set of thresholds for the same variables, together with the number of breaches of thresholds that constitute a prediction of conflict, that minimize the prediction loss function. The paper evaluates the predictive power of these approaches in a set of conflict and non-conflict episodes constructed from a large country-year panel of developing countries since 1977, and finds substantial differences in the in-sample and out-of-sample predictive performance of these alternative algorithms. The threshold classifier has the best overall predictive performance, and moreover has advantages in simplicity and transparency that make it well suited for policy-making purposes. The paper explores the implications of these findings for the World Bank's classification of fragile and conflict-affected states |
Beschreibung: | 1 Online-Ressource (48 p) |
DOI: | 10.1596/1813-9450-8075 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048269636 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220609s2017 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-8075 |2 doi | |
035 | |a (ZDB-1-WBA)NLM010468994 | ||
035 | |a (OCoLC)1334030313 | ||
035 | |a (DE-599)GBVNLM010468994 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Celiku, Bledi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Predicting Conflict |c Bledi Celiku |
264 | 1 | |a Washington, D.C |b The World Bank |c 2017 | |
300 | |a 1 Online-Ressource (48 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a World Bank E-Library Archive | |
520 | |a This paper studies the performance of alternative prediction models for conflict. The analysis contrasts the performance of conventional approaches based on predicted probabilities generated by binary response regressions and random forests with two unconventional classification algorithms. The unconventional algorithms are calibrated specifically to minimize a prediction loss function penalizing Type 1 and Type 2 errors: (1) an algorithm that selects linear combinations of correlates of conflict to minimize the prediction loss function, and (2) an algorithm that chooses a set of thresholds for the same variables, together with the number of breaches of thresholds that constitute a prediction of conflict, that minimize the prediction loss function. The paper evaluates the predictive power of these approaches in a set of conflict and non-conflict episodes constructed from a large country-year panel of developing countries since 1977, and finds substantial differences in the in-sample and out-of-sample predictive performance of these alternative algorithms. The threshold classifier has the best overall predictive performance, and moreover has advantages in simplicity and transparency that make it well suited for policy-making purposes. The paper explores the implications of these findings for the World Bank's classification of fragile and conflict-affected states | ||
700 | 1 | |a Kraay, Aart |4 oth | |
700 | 1 | |a Celiku, Bledi |4 oth | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Celiku, Bledi |t Predicting Conflict |d Washington, D.C : The World Bank, 2017 |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-8075 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033649831 |
Datensatz im Suchindex
_version_ | 1812671774154817536 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Celiku, Bledi |
author_facet | Celiku, Bledi |
author_role | aut |
author_sort | Celiku, Bledi |
author_variant | b c bc |
building | Verbundindex |
bvnumber | BV048269636 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)NLM010468994 (OCoLC)1334030313 (DE-599)GBVNLM010468994 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-8075 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048269636</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220609s2017 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-8075</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)NLM010468994</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1334030313</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLM010468994</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Celiku, Bledi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Predicting Conflict</subfield><subfield code="c">Bledi Celiku</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (48 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">World Bank E-Library Archive</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper studies the performance of alternative prediction models for conflict. The analysis contrasts the performance of conventional approaches based on predicted probabilities generated by binary response regressions and random forests with two unconventional classification algorithms. The unconventional algorithms are calibrated specifically to minimize a prediction loss function penalizing Type 1 and Type 2 errors: (1) an algorithm that selects linear combinations of correlates of conflict to minimize the prediction loss function, and (2) an algorithm that chooses a set of thresholds for the same variables, together with the number of breaches of thresholds that constitute a prediction of conflict, that minimize the prediction loss function. The paper evaluates the predictive power of these approaches in a set of conflict and non-conflict episodes constructed from a large country-year panel of developing countries since 1977, and finds substantial differences in the in-sample and out-of-sample predictive performance of these alternative algorithms. The threshold classifier has the best overall predictive performance, and moreover has advantages in simplicity and transparency that make it well suited for policy-making purposes. The paper explores the implications of these findings for the World Bank's classification of fragile and conflict-affected states</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kraay, Aart</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Celiku, Bledi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Celiku, Bledi</subfield><subfield code="t">Predicting Conflict</subfield><subfield code="d">Washington, D.C : The World Bank, 2017</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-8075</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033649831</subfield></datafield></record></collection> |
id | DE-604.BV048269636 |
illustrated | Not Illustrated |
index_date | 2024-07-03T20:00:01Z |
indexdate | 2024-10-12T04:01:54Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033649831 |
oclc_num | 1334030313 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (48 p) |
psigel | ZDB-1-WBA |
publishDate | 2017 |
publishDateSearch | 2017 |
publishDateSort | 2017 |
publisher | The World Bank |
record_format | marc |
series2 | World Bank E-Library Archive |
spellingShingle | Celiku, Bledi Predicting Conflict |
title | Predicting Conflict |
title_auth | Predicting Conflict |
title_exact_search | Predicting Conflict |
title_exact_search_txtP | Predicting Conflict |
title_full | Predicting Conflict Bledi Celiku |
title_fullStr | Predicting Conflict Bledi Celiku |
title_full_unstemmed | Predicting Conflict Bledi Celiku |
title_short | Predicting Conflict |
title_sort | predicting conflict |
url | https://doi.org/10.1596/1813-9450-8075 |
work_keys_str_mv | AT celikubledi predictingconflict AT kraayaart predictingconflict |