Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality:
This paper proposes a method for estimating distribution functions that are associated with the nested errors in linear mixed models. The estimator incorporates Empirical Bayes prediction while making minimal assumptions about the shape of the error distributions. The application presented in this p...
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Washington, D.C
The World Bank
2014
|
Online-Zugang: | Volltext |
Zusammenfassung: | This paper proposes a method for estimating distribution functions that are associated with the nested errors in linear mixed models. The estimator incorporates Empirical Bayes prediction while making minimal assumptions about the shape of the error distributions. The application presented in this paper is the small area estimation of poverty and inequality, although this denotes by no means the only application. Monte-Carlo simulations show that estimates of poverty and inequality can be severely biased when the non-normality of the errors is ignored. The bias can be as high as 2 to 3 percent on a poverty rate of 20 to 30 percent. Most of this bias is resolved when using the proposed estimator. The approach is applicable to both survey-to-census and survey-to-survey prediction |
Beschreibung: | 1 Online-Ressource (33 p) |
DOI: | 10.1596/1813-9450-6962 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV048266395 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 220609s2014 |||| o||u| ||||||eng d | ||
024 | 7 | |a 10.1596/1813-9450-6962 |2 doi | |
035 | |a (ZDB-1-WBA)NLM010340505 | ||
035 | |a (OCoLC)1334020508 | ||
035 | |a (DE-599)GBVNLM010340505 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-12 |a DE-521 |a DE-573 |a DE-523 |a DE-Re13 |a DE-19 |a DE-355 |a DE-703 |a DE-91 |a DE-706 |a DE-29 |a DE-M347 |a DE-473 |a DE-824 |a DE-20 |a DE-739 |a DE-1043 |a DE-863 |a DE-862 | ||
100 | 1 | |a Elbers, Chris |e Verfasser |4 aut | |
245 | 1 | 0 | |a Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality |c Elbers, Chris |
264 | 1 | |a Washington, D.C |b The World Bank |c 2014 | |
300 | |a 1 Online-Ressource (33 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
520 | |a This paper proposes a method for estimating distribution functions that are associated with the nested errors in linear mixed models. The estimator incorporates Empirical Bayes prediction while making minimal assumptions about the shape of the error distributions. The application presented in this paper is the small area estimation of poverty and inequality, although this denotes by no means the only application. Monte-Carlo simulations show that estimates of poverty and inequality can be severely biased when the non-normality of the errors is ignored. The bias can be as high as 2 to 3 percent on a poverty rate of 20 to 30 percent. Most of this bias is resolved when using the proposed estimator. The approach is applicable to both survey-to-census and survey-to-survey prediction | ||
700 | 1 | |a Elbers, Chris |4 oth | |
700 | 1 | |a van der Weide, Roy |4 oth | |
776 | 0 | 8 | |i Elbers, Chris |a Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality |
856 | 4 | 0 | |u https://doi.org/10.1596/1813-9450-6962 |x Verlag |z kostenfrei |3 Volltext |
912 | |a ZDB-1-WBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033646589 |
Datensatz im Suchindex
_version_ | 1824556163634561025 |
---|---|
adam_text | |
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Elbers, Chris |
author_facet | Elbers, Chris |
author_role | aut |
author_sort | Elbers, Chris |
author_variant | c e ce |
building | Verbundindex |
bvnumber | BV048266395 |
collection | ZDB-1-WBA |
ctrlnum | (ZDB-1-WBA)NLM010340505 (OCoLC)1334020508 (DE-599)GBVNLM010340505 |
discipline | Wirtschaftswissenschaften |
discipline_str_mv | Wirtschaftswissenschaften |
doi_str_mv | 10.1596/1813-9450-6962 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zc 4500</leader><controlfield tag="001">BV048266395</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">220609s2014 |||| o||u| ||||||eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1596/1813-9450-6962</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-1-WBA)NLM010340505</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1334020508</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)GBVNLM010340505</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-12</subfield><subfield code="a">DE-521</subfield><subfield code="a">DE-573</subfield><subfield code="a">DE-523</subfield><subfield code="a">DE-Re13</subfield><subfield code="a">DE-19</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-706</subfield><subfield code="a">DE-29</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-473</subfield><subfield code="a">DE-824</subfield><subfield code="a">DE-20</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-863</subfield><subfield code="a">DE-862</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Elbers, Chris</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality</subfield><subfield code="c">Elbers, Chris</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Washington, D.C</subfield><subfield code="b">The World Bank</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (33 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This paper proposes a method for estimating distribution functions that are associated with the nested errors in linear mixed models. The estimator incorporates Empirical Bayes prediction while making minimal assumptions about the shape of the error distributions. The application presented in this paper is the small area estimation of poverty and inequality, although this denotes by no means the only application. Monte-Carlo simulations show that estimates of poverty and inequality can be severely biased when the non-normality of the errors is ignored. The bias can be as high as 2 to 3 percent on a poverty rate of 20 to 30 percent. Most of this bias is resolved when using the proposed estimator. The approach is applicable to both survey-to-census and survey-to-survey prediction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Elbers, Chris</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">van der Weide, Roy</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Elbers, Chris</subfield><subfield code="a">Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1596/1813-9450-6962</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-1-WBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033646589</subfield></datafield></record></collection> |
id | DE-604.BV048266395 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:59:54Z |
indexdate | 2025-02-20T07:19:12Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033646589 |
oclc_num | 1334020508 |
open_access_boolean | 1 |
owner | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
owner_facet | DE-12 DE-521 DE-573 DE-523 DE-Re13 DE-BY-UBR DE-19 DE-BY-UBM DE-355 DE-BY-UBR DE-703 DE-91 DE-BY-TUM DE-706 DE-29 DE-M347 DE-473 DE-BY-UBG DE-824 DE-20 DE-739 DE-1043 DE-863 DE-BY-FWS DE-862 DE-BY-FWS |
physical | 1 Online-Ressource (33 p) |
psigel | ZDB-1-WBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | The World Bank |
record_format | marc |
spellingShingle | Elbers, Chris Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality |
title | Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality |
title_auth | Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality |
title_exact_search | Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality |
title_exact_search_txtP | Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality |
title_full | Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality Elbers, Chris |
title_fullStr | Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality Elbers, Chris |
title_full_unstemmed | Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality Elbers, Chris |
title_short | Estimation of Normal Mixtures in a Nested Error Model with an Application to Small Area Estimation of Poverty and Inequality |
title_sort | estimation of normal mixtures in a nested error model with an application to small area estimation of poverty and inequality |
url | https://doi.org/10.1596/1813-9450-6962 |
work_keys_str_mv | AT elberschris estimationofnormalmixturesinanestederrormodelwithanapplicationtosmallareaestimationofpovertyandinequality AT vanderweideroy estimationofnormalmixturesinanestederrormodelwithanapplicationtosmallareaestimationofpovertyandinequality |