Hyperosmolarity stimulates transporter-mediated insertion of estrone sulfate into the plasma membrane, but inhibits the uptake by SLC10A1 (NTCP):
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Buch |
Sprache: | English |
Veröffentlicht: |
Köln
2021
|
Schlagworte: | |
Online-Zugang: | Inhaltsverzeichnis Inhaltsverzeichnis |
Beschreibung: | 169 Seiten Illustrationen, Diagramme 21 cm |
Internformat
MARC
LEADER | 00000nam a2200000 c 4500 | ||
---|---|---|---|
001 | BV048256355 | ||
003 | DE-604 | ||
005 | 20230118 | ||
007 | t | ||
008 | 220607s2021 gw a||| m||| 00||| eng d | ||
015 | |a 22,H05 |2 dnb | ||
016 | 7 | |a 1248249488 |2 DE-101 | |
020 | |c Broschur | ||
035 | |a (OCoLC)1315530917 | ||
035 | |a (DE-599)DNB1248249488 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE | ||
049 | |a DE-355 |a DE-83 | ||
084 | |8 2\p |a 570 |2 23sdnb | ||
084 | |a 570 |2 sdnb | ||
084 | |8 1\p |a 610 |2 23sdnb | ||
100 | 1 | |a Müller, Julian Peter |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hyperosmolarity stimulates transporter-mediated insertion of estrone sulfate into the plasma membrane, but inhibits the uptake by SLC10A1 (NTCP) |c vorgelegt von Julian Peter Müller |
264 | 1 | |a Köln |c 2021 | |
300 | |a 169 Seiten |b Illustrationen, Diagramme |c 21 cm | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
502 | |b Dissertation |c Universität zu Köln |d 2021 | ||
655 | 7 | |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
856 | 4 | 2 | |m B:DE-101 |q application/pdf |u https://d-nb.info/1248249488/04 |3 Inhaltsverzeichnis |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033636586&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
999 | |a oai:aleph.bib-bvb.de:BVB01-033636586 | ||
883 | 2 | |8 1\p |a dnb |d 20220420 |q DE-101 |u https://d-nb.info/provenance/plan#dnb | |
883 | 2 | |8 2\p |a dnb |d 20220420 |q DE-101 |u https://d-nb.info/provenance/plan#dnb |
Datensatz im Suchindex
_version_ | 1804184057001541632 |
---|---|
adam_text | II.
TABLE
OF
CONTENTS
II.
TABLE
OF
CONTENTS
I.
ACKNOWLEDGEMENTS
....................................................................................................................
3
II.
TABLE
OF
CONTENTS
......................................................................................................................
4
III.
LIST
OF
FIGURES
..........................................................................................................................
8
IV.
ABBREVIATIONS
.........................................................................................................................
10
1.
INTRODUCTION
..............................................................................................................................
14
1.1
TRANSPORT
ACROSS
MEMBRANES
.............................................................................................
14
1.2
TRANSPORT
PROTEINS
.............................................................................................................
15
1.3
THE
ALTERNATING
ACCESS
MECHANISM
....................................................................................
17
1.4
REGULATION
OF
TRANSPORTER
EXPRESSION
AND
FUNCTION
..........................................................
18
1.5
THE
SLC22
FAMILY
.............................................................................................................
20
1.6
THE
ORGANIC
ANION
TRANSPORTER
4
(OAT4,
SLC22A1
1)
....................................................
21
1.7
IS
ESTRONE
3
SULFATE
INSERTED
INTO
THE
PLASMA
MEMBRANE
BY
SLC22A
11?
........................
24
1.8
THE
NA
+
TAUROCHOLATE
COTRANSPORTING
POLYPEPTIDE
(NTCP/SLC10A1)
............................
28
1.9
AIM
OF
THE
THESIS
...............................................................................................................
34
2.
MATERIAL
AND
METHODS
..............................................................................................................
36
2.1
MATERIAL
..........................................................................................................................
36
2.1.1
SOLUTIONS
AND
BUFFERS
.................................................................................................
36
2.1.2
CHEMICALS
AND
CONSUMABLES
......................................................................................
36
2.1.3
PEBTETD
AND
PEBTETLNC
EXPRESSION
SYSTEMS
.......................................................
37
2.1.4
PLASMID
VECTORS
..........................................................................................................
38
2.1.5
LC-MS
SOLVENTS
..........................................................................................................
39
2.1.6
HPLC
COLUMNS
...........................................................................................................
39
2.1.7
TRANSPORTER
SUBSTRATES
................................................................................................
39
2.1.8
SOFTWARE
.....................................................................................................................
40
2.1.9
ANTIBODIES
..................................................................................................................
40
II.
TABLE
OF
CONTENTS
2.2
MOLECULAR
BIOLOGY
METHODS
..............................................................................................
41
2.2.1
CHEMICAL
TRANSFORMATION
OF
E.
COH
..........................................................................
41
2.2.2
TRANSFORMATION
OF
ELECTROCOMPETENT
E.
COLL
.............................................................
41
2.2.3
CULTIVATION
OF
TRANSFORMED
E.
COLL
............................................................................
42
2.2.4
PLASMID
DNA
MINI
PREPARATION
WITH
KIT
..................................................................
42
2.2.5
PLASMID
DNA
MINI
PREPARATION
WITHOUT
KIT
.............................................................
43
2.2.6
PLASMID
DNA
MAXI
PREPARATION
...............................................................................
44
2.2.7
DNA
MEASUREMENT
WITH
NANODROP
...........................................................................
44
2.2.8
AGAROSE
GEL
ELECTROPHORESIS
......................................................................................
45
2.2.9
DNA
SEQUENCING
.......................................................................................................
45
2.2.10
GENERATION
OF
THE
PEBTETLNC/SLCLOAL
CONSTRUCT
.............................................
46
2.2.11
GENERATION
OF
THE
PEBTETD/SLC10A6
CONSTRUCT
...................................................
52
2.2.12
GENERATION
OF
THE
PEBTETD/SLC22A9
CONSTRUCT
...................................................
53
2.2.13
GENERATION
OF
SLC10A1
MUTATIONS
S267F
AND
E257Q
.........................................
53
2.3
CELL
BIOLOGY
METHODS
.......................................................................................................
55
2.3.1
CELL
CULTURE
................................................................................................................
55
2.3.2
HEK.293
CELL
CULTURE
..................................................................................................
56
2.3.3
PREPARATION
OF
HEK293
LIQUID
NITROGEN
STOCKS
........................................................
56
2.3.4
THAWING
OF
HEK.293
LIQUID
NITROGEN
STOCKS
............................................................
56
2.3.5
TRANSFECTION
OF
HEK293
CELLS
...................................................................................
57
2.3.6
SEEDING
OF
HEK293
CELLS
..........................................................................................
57
2.3.7
TIME
COURSE
EXPERIMENTS
..........................................................................................
58
2.3.8
EQUILIBRIUM
ACCUMULATION
EXPERIMENTS
...................................................................
58
2.3.9
OSMOLARITY
EXPERIMENTS
............................................................................................
59
2.3.10
EFFLUX
EXPERIMENTS
..................................................................................................
59
2.3.11
TRANS-STIMULATION
OR
INHIBITION
EXPERIMENTS
..........................................................
60
2.3.12
CIS-INHIBITION
EXPERIMENTS
......................................................................................
60
2.3.13
SODIUM-DEPENDENCE
OF
SLC10A1
UPTAKE
.............................................................
61
5
II.
TABLE
OF
CONTENTS
2.3.14
CHLORIDE-DEPENDENCE
OF
SLC10A1
UPTAKE
..............................................................
61
2.3.15
GENERATION
OF
CONTROL
CELL
LYSATES
............................................................................
62
2.3.16
MICROSCOPY
...............................................................................................................
62
2.4
BIOCHEMICAL
METHODS
........................................................................................................
63
2.4.1
PROTEIN
MEASUREMENT
WITH
THE
BICINCHONINIC
ACID
(BCA)
ASSAY
..............................
63
2.4.2
MEMBRANE
ISOLATION
WITH
CATIONIC
MAGNETIC
BEADS
..................................................
63
2.4.3
SDS
POLYACRYLAMIDE
GEL
ELECTROPHORESIS
..................................................................
64
2.4.4
IMMUNOBLOTTING
(WESTERN
BLOT)
.................................................................................
66
2.4.5
LACTATE
DEHYDROGENASE
(LDH)
CYTOTOXICITY
ASSAY
....................................................
67
2.5
HIGH
PERFORMANCE
LIQUID
CHROMATOGRAPHY
-
ELECTROSPRAY
IONISATION
-
MASS
SPECTROMETRY
(HPLC-ESI-MS)
......................................................................................................................
68
2.5.1
HIGH
PERFORMANCE
LIQUID
CHROMATOGRAPHY
(HPLC)
.................................................
69
2.5.2
ELECTROSPRAY
IONISATION
...............................................................................................
72
2.5.3
MASS
SPECTROMETRY
......................................................................................................
73
2.5.4
FULL
SCAN
(QI
SCAN)
.....................................................................................................
77
2.5.5
DIFFERENCE
SHADING
.....................................................................................................
78
2.5.6
PRODUCT
ION
SCAN
.........................................................................................................
79
2.5.7
TUNING
OF
ANALYTES
......................................................................................................
79
2.6
CALCULATIONS
AND
STATISTICS
.................................................................................................
80
3.
RESULTS
..................................................................................................................................
82
3.1
PRELIMINARY
NOTE
...............................................................................................................
82
3.2
P-CRESOL
SULFATE
IS
A
NOVEL
SUBSTRATE
OF
SLC10A1
AND
SLC22A1
1
................................
83
3.3
DOES
SLC10A1
HAVE
DIFFERENT
TRANSPORT
MECHANISMS
FOR
E3S
AND
TCA?
.....................
88
3.3.1
CIS-INHIBITION
ON
E3S
AND
TCA
TRANSPORT
BY
SLC10A1
..........................................
90
3.3.2
EFFLUX
FROM
SLC10A1
EXPRESSING
CELLS
....................................................................
92
3.3.3
RECIPROCAL
TRANS-STIMULATION
OF
E3S
AND
TCA
EFFLUX
..............................................
95
3.3.4
ANALYSIS
OF
THE
TRANSPORT
PROPERTIES
OF
SLC10A1
MUTANTS
S267F
AND
E257Q
.......
96
3.4
TIME
COURSE
EXPERIMENTS
AND
EQUILIBRIUM
ACCUMULATION
OF
SLC10A1
SUBSTRATES
.......
98
6
II.
TABLE
OF
CONTENTS
3.5
FAST
PLASMA
MEMBRANE
ISOLATION
TO
TEST
MEMBRANE
INSERTION
OF
E3S
............................
104
3.6
EFFECT
OFHYPEROSMOLARITY
ON
SLC22A1
1
SUBSTRATE
ACCUMULATION
................................
106
3.7
LDH
CYTOTOXICITY
ASSAY
TO
MEASURE
CELL
VIABILITY
WITH
DIFFERENT
OSMOLYTES
...............
114
3.8
EFFECT
OFHYPEROSMOLARITY
ON
CELLULAR
MORPHOLOGY
......................................................
116
3.9
HYPEROSMOLARITY
AFFECTS
THE
TRANSPORT
OF
OTHER
SLC
TRANSPORTERS
.................................
118
3.10
BEHAVIOUR
OF
SLC
1
0A
1
IN
HYPEROSMOLARITY
DIFFERS
STRONGLY
......................................
121
4.
DISCUSSION
.........................................................................................................................
124
4.1
P-CRESOL
SULFATE
IS
A
NOVEL
SUBSTRATE
OF
SLC10A1
AND
SLC22A1
1
..............................
124
4.2
TRANSPORT
PROPERTIES
OF
SLC10A1
..................................................................................
125
4.3
TIME
COURSES
AND
EQUILIBRIUM
ACCUMULATION
EXPERIMENTS
WITH
SLC10A1
SUBSTRATES.
127
4.4
FAST
PLASMA
MEMBRANE
ISOLATION
TO
DETECT
MEMBRANE-INSERTED
TRANSPORTER
SUBSTRATES
129
4.5
HYPEROSMOLARITY
IS
A
NOVEL
METHODOLOGY
TO
ADDRESS
MEMBRANE
INSERTION
OF
TRANSPORTER
SUBSTRATES
...............................................................................................................................
130
4.6
WHAT
IS
THE
EXPLANATION
FOR
INCREASED
ACCUMULATION
OF
E3S
IN
HYPEROSMOLARITY?
......
135
4.7
FUTURE
PERSPECTIVES
.........................................................................................................
143
5.
ABSTRACT
.................................................................................................................................
145
6.
ZUSAMMENFASSUNG
.................................................................................................................
146
7.
LITERATURE
...............................................................................................................................
147
8.
APPENDIX
...............................................................................................................................
167
9.
EIDESSTATTLICHE
ERKLARUNG
......................................................................................................
169
7
|
adam_txt |
II.
TABLE
OF
CONTENTS
II.
TABLE
OF
CONTENTS
I.
ACKNOWLEDGEMENTS
.
3
II.
TABLE
OF
CONTENTS
.
4
III.
LIST
OF
FIGURES
.
8
IV.
ABBREVIATIONS
.
10
1.
INTRODUCTION
.
14
1.1
TRANSPORT
ACROSS
MEMBRANES
.
14
1.2
TRANSPORT
PROTEINS
.
15
1.3
THE
ALTERNATING
ACCESS
MECHANISM
.
17
1.4
REGULATION
OF
TRANSPORTER
EXPRESSION
AND
FUNCTION
.
18
1.5
THE
SLC22
FAMILY
.
20
1.6
THE
ORGANIC
ANION
TRANSPORTER
4
(OAT4,
SLC22A1
1)
.
21
1.7
IS
ESTRONE
3
SULFATE
INSERTED
INTO
THE
PLASMA
MEMBRANE
BY
SLC22A
11?
.
24
1.8
THE
NA
+
TAUROCHOLATE
COTRANSPORTING
POLYPEPTIDE
(NTCP/SLC10A1)
.
28
1.9
AIM
OF
THE
THESIS
.
34
2.
MATERIAL
AND
METHODS
.
36
2.1
MATERIAL
.
36
2.1.1
SOLUTIONS
AND
BUFFERS
.
36
2.1.2
CHEMICALS
AND
CONSUMABLES
.
36
2.1.3
PEBTETD
AND
PEBTETLNC
EXPRESSION
SYSTEMS
.
37
2.1.4
PLASMID
VECTORS
.
38
2.1.5
LC-MS
SOLVENTS
.
39
2.1.6
HPLC
COLUMNS
.
39
2.1.7
TRANSPORTER
SUBSTRATES
.
39
2.1.8
SOFTWARE
.
40
2.1.9
ANTIBODIES
.
40
II.
TABLE
OF
CONTENTS
2.2
MOLECULAR
BIOLOGY
METHODS
.
41
2.2.1
CHEMICAL
TRANSFORMATION
OF
E.
COH
.
41
2.2.2
TRANSFORMATION
OF
ELECTROCOMPETENT
E.
COLL
.
41
2.2.3
CULTIVATION
OF
TRANSFORMED
E.
COLL
.
42
2.2.4
PLASMID
DNA
MINI
PREPARATION
WITH
KIT
.
42
2.2.5
PLASMID
DNA
MINI
PREPARATION
WITHOUT
KIT
.
43
2.2.6
PLASMID
DNA
MAXI
PREPARATION
.
44
2.2.7
DNA
MEASUREMENT
WITH
NANODROP
.
44
2.2.8
AGAROSE
GEL
ELECTROPHORESIS
.
45
2.2.9
DNA
SEQUENCING
.
45
2.2.10
GENERATION
OF
THE
PEBTETLNC/SLCLOAL
CONSTRUCT
.
46
2.2.11
GENERATION
OF
THE
PEBTETD/SLC10A6
CONSTRUCT
.
52
2.2.12
GENERATION
OF
THE
PEBTETD/SLC22A9
CONSTRUCT
.
53
2.2.13
GENERATION
OF
SLC10A1
MUTATIONS
S267F
AND
E257Q
.
53
2.3
CELL
BIOLOGY
METHODS
.
55
2.3.1
CELL
CULTURE
.
55
2.3.2
HEK.293
CELL
CULTURE
.
56
2.3.3
PREPARATION
OF
HEK293
LIQUID
NITROGEN
STOCKS
.
56
2.3.4
THAWING
OF
HEK.293
LIQUID
NITROGEN
STOCKS
.
56
2.3.5
TRANSFECTION
OF
HEK293
CELLS
.
57
2.3.6
SEEDING
OF
HEK293
CELLS
.
57
2.3.7
TIME
COURSE
EXPERIMENTS
.
58
2.3.8
EQUILIBRIUM
ACCUMULATION
EXPERIMENTS
.
58
2.3.9
OSMOLARITY
EXPERIMENTS
.
59
2.3.10
EFFLUX
EXPERIMENTS
.
59
2.3.11
TRANS-STIMULATION
OR
INHIBITION
EXPERIMENTS
.
60
2.3.12
CIS-INHIBITION
EXPERIMENTS
.
60
2.3.13
SODIUM-DEPENDENCE
OF
SLC10A1
UPTAKE
.
61
5
II.
TABLE
OF
CONTENTS
2.3.14
CHLORIDE-DEPENDENCE
OF
SLC10A1
UPTAKE
.
61
2.3.15
GENERATION
OF
CONTROL
CELL
LYSATES
.
62
2.3.16
MICROSCOPY
.
62
2.4
BIOCHEMICAL
METHODS
.
63
2.4.1
PROTEIN
MEASUREMENT
WITH
THE
BICINCHONINIC
ACID
(BCA)
ASSAY
.
63
2.4.2
MEMBRANE
ISOLATION
WITH
CATIONIC
MAGNETIC
BEADS
.
63
2.4.3
SDS
POLYACRYLAMIDE
GEL
ELECTROPHORESIS
.
64
2.4.4
IMMUNOBLOTTING
(WESTERN
BLOT)
.
66
2.4.5
LACTATE
DEHYDROGENASE
(LDH)
CYTOTOXICITY
ASSAY
.
67
2.5
HIGH
PERFORMANCE
LIQUID
CHROMATOGRAPHY
-
ELECTROSPRAY
IONISATION
-
MASS
SPECTROMETRY
(HPLC-ESI-MS)
.
68
2.5.1
HIGH
PERFORMANCE
LIQUID
CHROMATOGRAPHY
(HPLC)
.
69
2.5.2
ELECTROSPRAY
IONISATION
.
72
2.5.3
MASS
SPECTROMETRY
.
73
2.5.4
FULL
SCAN
(QI
SCAN)
.
77
2.5.5
DIFFERENCE
SHADING
.
78
2.5.6
PRODUCT
ION
SCAN
.
79
2.5.7
TUNING
OF
ANALYTES
.
79
2.6
CALCULATIONS
AND
STATISTICS
.
80
3.
RESULTS
.
82
3.1
PRELIMINARY
NOTE
.
82
3.2
P-CRESOL
SULFATE
IS
A
NOVEL
SUBSTRATE
OF
SLC10A1
AND
SLC22A1
1
.
83
3.3
DOES
SLC10A1
HAVE
DIFFERENT
TRANSPORT
MECHANISMS
FOR
E3S
AND
TCA?
.
88
3.3.1
CIS-INHIBITION
ON
E3S
AND
TCA
TRANSPORT
BY
SLC10A1
.
90
3.3.2
EFFLUX
FROM
SLC10A1
EXPRESSING
CELLS
.
92
3.3.3
RECIPROCAL
TRANS-STIMULATION
OF
E3S
AND
TCA
EFFLUX
.
95
3.3.4
ANALYSIS
OF
THE
TRANSPORT
PROPERTIES
OF
SLC10A1
MUTANTS
S267F
AND
E257Q
.
96
3.4
TIME
COURSE
EXPERIMENTS
AND
EQUILIBRIUM
ACCUMULATION
OF
SLC10A1
SUBSTRATES
.
98
6
II.
TABLE
OF
CONTENTS
3.5
FAST
PLASMA
MEMBRANE
ISOLATION
TO
TEST
MEMBRANE
INSERTION
OF
E3S
.
104
3.6
EFFECT
OFHYPEROSMOLARITY
ON
SLC22A1
1
SUBSTRATE
ACCUMULATION
.
106
3.7
LDH
CYTOTOXICITY
ASSAY
TO
MEASURE
CELL
VIABILITY
WITH
DIFFERENT
OSMOLYTES
.
114
3.8
EFFECT
OFHYPEROSMOLARITY
ON
CELLULAR
MORPHOLOGY
.
116
3.9
HYPEROSMOLARITY
AFFECTS
THE
TRANSPORT
OF
OTHER
SLC
TRANSPORTERS
.
118
3.10
BEHAVIOUR
OF
SLC
1
0A
1
IN
HYPEROSMOLARITY
DIFFERS
STRONGLY
.
121
4.
DISCUSSION
.
124
4.1
P-CRESOL
SULFATE
IS
A
NOVEL
SUBSTRATE
OF
SLC10A1
AND
SLC22A1
1
.
124
4.2
TRANSPORT
PROPERTIES
OF
SLC10A1
.
125
4.3
TIME
COURSES
AND
EQUILIBRIUM
ACCUMULATION
EXPERIMENTS
WITH
SLC10A1
SUBSTRATES.
127
4.4
FAST
PLASMA
MEMBRANE
ISOLATION
TO
DETECT
MEMBRANE-INSERTED
TRANSPORTER
SUBSTRATES
129
4.5
HYPEROSMOLARITY
IS
A
NOVEL
METHODOLOGY
TO
ADDRESS
MEMBRANE
INSERTION
OF
TRANSPORTER
SUBSTRATES
.
130
4.6
WHAT
IS
THE
EXPLANATION
FOR
INCREASED
ACCUMULATION
OF
E3S
IN
HYPEROSMOLARITY?
.
135
4.7
FUTURE
PERSPECTIVES
.
143
5.
ABSTRACT
.
145
6.
ZUSAMMENFASSUNG
.
146
7.
LITERATURE
.
147
8.
APPENDIX
.
167
9.
EIDESSTATTLICHE
ERKLARUNG
.
169
7 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author | Müller, Julian Peter |
author_facet | Müller, Julian Peter |
author_role | aut |
author_sort | Müller, Julian Peter |
author_variant | j p m jp jpm |
building | Verbundindex |
bvnumber | BV048256355 |
ctrlnum | (OCoLC)1315530917 (DE-599)DNB1248249488 |
discipline | Biologie |
discipline_str_mv | Biologie |
format | Thesis Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01637nam a2200397 c 4500</leader><controlfield tag="001">BV048256355</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230118 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220607s2021 gw a||| m||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">22,H05</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1248249488</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="c">Broschur</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1315530917</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1248249488</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-355</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">2\p</subfield><subfield code="a">570</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">570</subfield><subfield code="2">sdnb</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="8">1\p</subfield><subfield code="a">610</subfield><subfield code="2">23sdnb</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Müller, Julian Peter</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperosmolarity stimulates transporter-mediated insertion of estrone sulfate into the plasma membrane, but inhibits the uptake by SLC10A1 (NTCP)</subfield><subfield code="c">vorgelegt von Julian Peter Müller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Köln</subfield><subfield code="c">2021</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">169 Seiten</subfield><subfield code="b">Illustrationen, Diagramme</subfield><subfield code="c">21 cm</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Dissertation</subfield><subfield code="c">Universität zu Köln</subfield><subfield code="d">2021</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">B:DE-101</subfield><subfield code="q">application/pdf</subfield><subfield code="u">https://d-nb.info/1248249488/04</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033636586&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033636586</subfield></datafield><datafield tag="883" ind1="2" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">dnb</subfield><subfield code="d">20220420</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#dnb</subfield></datafield><datafield tag="883" ind1="2" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">dnb</subfield><subfield code="d">20220420</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#dnb</subfield></datafield></record></collection> |
genre | (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV048256355 |
illustrated | Illustrated |
index_date | 2024-07-03T19:58:34Z |
indexdate | 2024-07-10T09:33:17Z |
institution | BVB |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033636586 |
oclc_num | 1315530917 |
open_access_boolean | |
owner | DE-355 DE-BY-UBR DE-83 |
owner_facet | DE-355 DE-BY-UBR DE-83 |
physical | 169 Seiten Illustrationen, Diagramme 21 cm |
publishDate | 2021 |
publishDateSearch | 2021 |
publishDateSort | 2021 |
record_format | marc |
spelling | Müller, Julian Peter Verfasser aut Hyperosmolarity stimulates transporter-mediated insertion of estrone sulfate into the plasma membrane, but inhibits the uptake by SLC10A1 (NTCP) vorgelegt von Julian Peter Müller Köln 2021 169 Seiten Illustrationen, Diagramme 21 cm txt rdacontent n rdamedia nc rdacarrier Dissertation Universität zu Köln 2021 (DE-588)4113937-9 Hochschulschrift gnd-content B:DE-101 application/pdf https://d-nb.info/1248249488/04 Inhaltsverzeichnis DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033636586&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis 1\p dnb 20220420 DE-101 https://d-nb.info/provenance/plan#dnb 2\p dnb 20220420 DE-101 https://d-nb.info/provenance/plan#dnb |
spellingShingle | Müller, Julian Peter Hyperosmolarity stimulates transporter-mediated insertion of estrone sulfate into the plasma membrane, but inhibits the uptake by SLC10A1 (NTCP) |
subject_GND | (DE-588)4113937-9 |
title | Hyperosmolarity stimulates transporter-mediated insertion of estrone sulfate into the plasma membrane, but inhibits the uptake by SLC10A1 (NTCP) |
title_auth | Hyperosmolarity stimulates transporter-mediated insertion of estrone sulfate into the plasma membrane, but inhibits the uptake by SLC10A1 (NTCP) |
title_exact_search | Hyperosmolarity stimulates transporter-mediated insertion of estrone sulfate into the plasma membrane, but inhibits the uptake by SLC10A1 (NTCP) |
title_exact_search_txtP | Hyperosmolarity stimulates transporter-mediated insertion of estrone sulfate into the plasma membrane, but inhibits the uptake by SLC10A1 (NTCP) |
title_full | Hyperosmolarity stimulates transporter-mediated insertion of estrone sulfate into the plasma membrane, but inhibits the uptake by SLC10A1 (NTCP) vorgelegt von Julian Peter Müller |
title_fullStr | Hyperosmolarity stimulates transporter-mediated insertion of estrone sulfate into the plasma membrane, but inhibits the uptake by SLC10A1 (NTCP) vorgelegt von Julian Peter Müller |
title_full_unstemmed | Hyperosmolarity stimulates transporter-mediated insertion of estrone sulfate into the plasma membrane, but inhibits the uptake by SLC10A1 (NTCP) vorgelegt von Julian Peter Müller |
title_short | Hyperosmolarity stimulates transporter-mediated insertion of estrone sulfate into the plasma membrane, but inhibits the uptake by SLC10A1 (NTCP) |
title_sort | hyperosmolarity stimulates transporter mediated insertion of estrone sulfate into the plasma membrane but inhibits the uptake by slc10a1 ntcp |
topic_facet | Hochschulschrift |
url | https://d-nb.info/1248249488/04 http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033636586&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT mullerjulianpeter hyperosmolaritystimulatestransportermediatedinsertionofestronesulfateintotheplasmamembranebutinhibitstheuptakebyslc10a1ntcp |
Es ist kein Print-Exemplar vorhanden.
Inhaltsverzeichnis