Transition metal oxides for electrochemical energy storage:
Gespeichert in:
Weitere Verfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Weinheim
Wiley-VCH
[2022]
|
Schlagworte: | |
Online-Zugang: | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34493-2/ Inhaltsverzeichnis |
Beschreibung: | xiv, 418 Seiten Illustrationen, Diagramme (teilweise farbig) |
ISBN: | 9783527344932 3527344934 |
Internformat
MARC
LEADER | 00000nam a22000008c 4500 | ||
---|---|---|---|
001 | BV048250194 | ||
003 | DE-604 | ||
005 | 20221207 | ||
007 | t| | ||
008 | 220601s2022 gw a||| |||| 00||| eng d | ||
015 | |a 21,N10 |2 dnb | ||
016 | 7 | |a 1228645264 |2 DE-101 | |
020 | |a 9783527344932 |c hbk. |9 978-3-527-34493-2 | ||
020 | |a 3527344934 |9 3-527-34493-4 | ||
035 | |a (OCoLC)1345281242 | ||
035 | |a (DE-599)DNB1228645264 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a gw |c XA-DE-BW | ||
049 | |a DE-11 |a DE-703 | ||
084 | |a VN 6050 |0 (DE-625)147593:253 |2 rvk | ||
245 | 1 | 0 | |a Transition metal oxides for electrochemical energy storage |c edited by Jagjit Nanda and Veronica Augustyn ; with a foreword by Michael Stanley Whittingham |
264 | 1 | |a Weinheim |b Wiley-VCH |c [2022] | |
264 | 4 | |c © 2022 | |
300 | |a xiv, 418 Seiten |b Illustrationen, Diagramme (teilweise farbig) | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
650 | 0 | 7 | |a Übergangsmetalloxide |0 (DE-588)4186583-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Batterie |0 (DE-588)4004687-4 |2 gnd |9 rswk-swf |
653 | |a Analytical Chemistry | ||
653 | |a Analytische Chemie | ||
653 | |a Chemie | ||
653 | |a Chemistry | ||
653 | |a Electronic Materials | ||
653 | |a Elektronische Materialien | ||
653 | |a Energie | ||
653 | |a Energy | ||
653 | |a Hydrogen, Batteries & Fuel Cells | ||
653 | |a Materials Science | ||
653 | |a Materialwissenschaften | ||
653 | |a Wasserstoff, Batterien u. Brennstoffzellen | ||
653 | |a CH10: Analytische Chemie | ||
653 | |a EG32: Wasserstoff, Batterien u. Brennstoffzellen | ||
653 | |a MS40: Elektronische Materialien | ||
655 | 7 | |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Übergangsmetalloxide |0 (DE-588)4186583-2 |D s |
689 | 0 | 1 | |a Batterie |0 (DE-588)4004687-4 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Nanda, Jagjit |0 (DE-588)1082356263 |4 edt | |
700 | 1 | |a Augustyn, Veronica |4 edt | |
700 | 1 | |a Whittingham, M. Stanley |d 1941- |0 (DE-588)1196732167 |4 wpr | |
710 | 2 | |a Wiley-VCH |0 (DE-588)16179388-5 |4 pbl | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, PDF |z 978-3-527-81722-1 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, EPUB |z 978-3-527-81724-5 |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe, oBook |z 978-3-527-81725-2 |
856 | 4 | 2 | |m X:MVB |u http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34493-2/ |
856 | 4 | 2 | |m DNB Datenaustausch |q application/pdf |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033630517&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |3 Inhaltsverzeichnis |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-033630517 |
Datensatz im Suchindex
_version_ | 1818247239522320384 |
---|---|
adam_text |
V
CONTENTS
FOREWORD
XIII
1
AN
OVERVIEW
OF
TRANSITION
METAL
OXIDES
FOR
ELECTROCHEMICAL
ENERGY
STORAGE
1
ETHAN
C.
SELF,
DEVENDRASINH
DARBAR,
VERONICA
AUGUSTYN,
AND
JAGJIT
NANDA
1.1
FUNDAMENTALS
OF
ELECTROCHEMICAL
CELLS
1
1.2
LI-ION
BATTERIES:
BASIC
PRINCIPLES
AND
TMO
ELECTRODES
3
1.3
BRIEF
HISTORY
OF
LITHIUM-ION
BATTERIES
4
1.4
THE
ROLE
OF
ADVANCED
CHARACTERIZATION
AND
COMPUTING
RESOURCES
4
1.5
BEYOND
LITHIUM-ION
BATTERIES
5
ACKNOWLEDGMENTS
6
REFERENCES
6
2
METAL-ION-COUPLED
ELECTRON
TRANSFER
KINETICS
IN
INTERCALATION-BASED
TRANSITION
METAL
OXIDES
9
VICTORIA
A.
NIKITINA
AND
KEITH
J.
STEVENSON
2.1
INTRODUCTION
9
2.2
THERMODYNAMIC
CONTROL
11
2.3
DIFFUSIONAL
CONTROL
14
2.4
KINETIC
CONTROL
16
2.5
EFFECT
OF
SURFACE
LAYERS
ON
ION
TRANSFER
KINETICS
20
2.6
SLOW
DESOLVATION
AS
A
LIMITING
INTERCALATION
STEP
24
2.7
CONCLUDING
REMARKS
28
REFERENCES
28
3
NEXT-GENERATION
COBALT-FREE
CATHODES
-
A
PROSPECTIVE
SOLUTION
TO
THE
BATTERY
INDUSTRY
'
S
COBALT
PROBLEM
33
NITIN
MURALIDHARAN,
ETHAN
C.
SELF,
JAGJIT
NANDA,
AND
LLIAS
BELHAROUAK
3.1
INTRODUCTION
33
3.2
POTENTIAL
OF
COBALT-FREE
CATHODE
MATERIALS
35
3.3
LAYERED
CATHODES
35
3.3.1
CONVENTIONAL
LAYERED
CATHODES
35
3.3.2
BINARY
LAYERED
NI-RICH
CATHODE
MATERIALS
36
VI
CONTENTS
3.3.3
TERNARY
LAYERED
NI-RICH
CATHODE
MATERIALS
39
3.4
SPINEL
AND
OLIVINE
CATHODES
41
3.5
DISORDERED
ROCKSALT
(DRX)
CATHODES
43
3.6
CHALLENGES
IN
COMMERCIAL
ADOPTION
OF
NEW
COBALT-FREE
CHEMISTRIES
45
3.6.1
SYNTHESIS
OF
CATHODE
PRECURSORS
46
3.6.2
SYNTHESIS
OF
FINAL
CATHODE
POWDERS
47
3.6.3
ELECTRODE
FABRICATION
47
3.6.4
BATTERY
ASSEMBLY
47
3.7
SUMMARY
AND
PERSPECTIVE
48
ACKNOWLEDGMENTS
49
CONFLICT
OF
INTEREST
49
REFERENCES
49
4
TRANSITION
METAL
OXIDE
ANODES
FOR
ELECTROCHEMICAL
ENERGY
STORAGE
IN
LITHIUM
AND
SODIUM-LON
BATTERIES
55
SHAN
FANG,
DOMINIC
BRESSER,
AND
STEFANO
PASSERINI
4.1
INTRODUCTION
55
4.2
POTENTIAL
ADVANTAGES
AND
CHALLENGES
OF
THE
CONVERSION
MECHANISM
58
4.3
TRANSITION
METAL
OXIDES
AS
ANODE
MATERIALS
61
4.3.1
IRON
OXIDE
(FE
3
O
4
,
FE
2
O
3
)
61
4.3.2
COBALT
OXIDE
(COO,
CO
3
O
4
)
67
4.3.3
MANGANESE
OXIDE
(MNO,
MN
3
O
4
,
MNO
2
)
71
4.3.4
COPPER
OXIDE
(CU
2
O,
CUO)
78
4.3.5
NICKEL
OXIDE
(NIO)
82
4.3.6
RUTHENIUM
OXIDE
(RUO
2
)
86
4.3.7
OTHER
TRANSITION
METAL
OXIDES
88
4.4
SUMMARY
AND
OUTLOOK
88
REFERENCES
90
5
LAYERED
NA-ION
TRANSITION-METAL
OXIDE
ELECTRODES
FOR
SODIUM-LON
BATTERIES
101
BASKAR
SENTHILKUMAR,
CHRISTOPHER
S.
JOHNSON,
AND
PREMKUMAR
SENGUTTUVAN
5.1
INTRODUCTION
101
5.2
LAYERED
TRANSITION-METAL
OXIDES
102
5.2.1
STRUCTURAL
CLASSIFICATION
102
5.2.2
SINGLE
TRANSITION-METAL-BASED
LAYERED
TRANSITION-METAL
OXIDES
103
5.2.3
MIXED-METAL-BASED
LAYERED
TRANSITION-METAL
OXIDES
107
5.2.4
ANIONIC
REDOX
ACTIVITY
FOR
HIGH
CAPACITY
110
5.3
SUMMARY
AND
OUTLOOK
112
REFERENCES
114
CONTENTS
VII
6
ANIONIC
REDOX
REACTION
IN
LI-EXCESS
HIGH-CAPACITY
TRANSITION-METAL
OXIDES
121
NAOAKI
YABUUCHI
6.1
STOICHIOMETRIC
LAYERED
OXIDES
FOR
RECHARGEABLE
LITHIUM
BATTERIES
121
6.2
LI-EXCESS
ROCKSALT
OXIDES
AS
HIGH-CAPACITY
POSITIVE
ELECTRODE
MATERIALS
123
6.3
REVERSIBLE
AND
IRREVERSIBLE
ANIONIC
REDOX
FOR
LI
3
NBO
4
-
AND
LI
2
TIO
3
-BASED
OXIDES
126
6.4
ACTIVATION
OF
ANIONIC
REDOX
BY
CHEMICAL
BONDS
WITH
HIGH
IONIC
CHARACTERS
130
6.5
LI
4
MOO
5
AS
A
HOST
STRUCTURE
FOR
LITHIUM-EXCESS
OXIDES
131
6.6
EXTREMELY
REVERSIBLE
ANIONIC
REDOX
FOR
LI
2
RUO
3
SYSTEM
133
6.7
ANIONIC
REDOX
FOR
SODIUM-STORAGE
APPLICATIONS
135
6.8
FUTURE
PERSPECTIVES
OF
ANIONIC
REDOX
FOR
ENERGY-STORAGE
APPLICATIONS
138
REFERENCES
139
7
TRANSITION
METAL
OXIDES
IN
AQUEOUS
ELECTROLYTES
145
XIAOQIANG
SHAN
AND
XIAOWEI
TENG
7.1
INTRODUCTION:
OPPORTUNITIES
AND
CHALLENGES
OF
AQUEOUS
BATTERIES
145
7.2
ELECTROCHEMISTRY
OF
AQUEOUS
BATTERIES
146
7.2.1
POTENTIAL
WINDOW
146
7.2.2
DIVERSE
CHARGE
TRANSFER
AND
STORAGE
PROCESSES
IN
AQUEOUS
BATTERIES
148
7.2.2.1
OVERVIEW
OFVARIOUS
STORAGE
MECHANISMS
148
7.2.2.2
SEMI-QUANTITATIVE
ANALYSIS
OF
STORAGE
MECHANISM
FROM
SWEEPING
VOLTAMMETRY
ANALYSIS
151
7.2.2.3
STORAGE
MECHANISMS
IN
ELECTROLYTE
WITH
DIFFERENT
PH
VALUES
152
7.3
TRANSITION
METAL
OXIDES
FOR
AQUEOUS
EES
156
7.3.1
MANGANESE
COMPOUNDS
157
7.3.1.1
CRYSTAL
STRUCTURES
OF
MANGANESE
OXIDES
FOR
AQUEOUS
STORAGE
157
7.3.1.2
COMPOSITING
MANGANESE
OXIDES
WITH
OTHER
ADDITIVES
161
7.3.1.3
SURFACE
ENGINEERING
CRYSTAL
FACETS,
EDGE
SITES,
AND
BULK/NANO
SIZE
DOMAIN
161
7.3.1.4
DOPING
AND
DEFECT
CHEMISTRY
162
7.3.1.5
PRE-INTERCALATED
SPECIES
163
7.3.2
NI
COMPOUNDS
165
7.3.3
VANADIUM
COMPOUNDS
167
7.3.3.1
LI
OR
NA
VANADATES
169
7.3.4
IRON
COMPOUNDS
171
7.3.4.1
FE/FE
3
O
4
171
7.3.4.2
FE
2
O
3
/FEOOH
172
VIII
CONTENTS
7.4
CONCLUSION
173
ACKNOWLEDGMENTS
174
REFERENCES
174
8
NANOSTRUCTURED
TRANSITION
METAL
OXIDES
FOR
ELECTROCHEMICAL
ENERGY
STORAGE
183
SIMON
FLEISCHMANN,
ISHITA
KAMBOJ,
AND
VERONICA
AUGUSTYN
8.1
FUNDAMENTAL
ELECTROCHEMISTRY
OF
NANOSTRUCTURED
TMOS
183
8.1.1
THERMODYNAMICS
OF
CHARGE
STORAGE
IN
NANOSTRUCTURED
TMOS
183
8.1.2
KINETICS
OF
CHARGE
STORAGE
IN
NANOSTRUCTURED
TMOS
186
8.2
EMERGING
NANOSTRUCTURED
TMOS
189
8.2.1
NANOSTRUCTURED
TMO
CATHODES
FOR
LIBS
189
8.2.2
NANOSTRUCTURED
BINARY
TMOS
FOR
CONVERSION-TYPE
CHARGE
STORAGE
193
8.2.3
NANOSTRUCTURED
BINARY
TMOS
FOR
INTERCALATION-TYPE
CHARGE
STORAGE
195
8.3
IMPLEMENTATION
OF
NANOSTRUCTURED
TMOS
IN
ELECTRODE
ARCHITECTURES
198
8.3.1
ONE-DIMENSIONAL
AND
TWO-DIMENSIONAL
ARCHITECTURES
201
8.3.1.1
NANOWIRES
AND
NANOTUBES
201
8.3.2
THREE-DIMENSIONAL
ARCHITECTURES
203
8.3.2.1
ASSEMBLIES
203
83.2.2
FOAMS
205
83.23
AEROGELS
205
8.4
CONCLUSIONS
206
REFERENCES
206
9
INTERFACES
IN
OXIDE-BASED
LI
METAL
BATTERIES
213
MORAN
BALAISH,
KUN
JOONG
KIM,
MASAKI
WADAGUCHI,
LINGPING
KONG,
AND
JENNIFER
L.M.
RUPP
9.1
INTRODUCTION
213
9.2
SOLID
OXIDE
ELECTROLYTES
215
9.3
CATHODE:
TOWARD
TRUE
SOLID
216
9.3.1
ORIGIN
OF
INTERFACIAL
IMPEDANCE
AND
CURRENT
PRESSING
ISSUES
AT
CATHODE/SOLID
ELECTROLYTE
INTERFACES
217
9.3.1.1
INTERFACIAL
REACTION
DURING
CELL
FABRICATION
220
9.3.1.2
ELECTROCHEMICAL
OXIDATION
AND
CHEMICAL
REACTION
DURING
CYCLE
222
9.3.1.3
CHEMO-MECHANICAL
DEGRADATION
DURING
CYCLING
223
9.3.2
STRATEGIES
AND
APPROACHES
TOWARD
ENHANCED
STABILITY
AND
PERFORMANCE
224
9.3.2.1
CATHODE
COATING
224
93.2.2
GEOMETRIC
ARRANGEMENT
CONCERNS
AND
STRATEGIES
TOWARD
MAXIMIZING
REACTION
SITES
226
93.23
CONDUCTIVE
ADDITIVES
IN
SOLID-STATE
CATHODE
229
9.4
ANODE:
ADOPTING
LITHIUM
METAL
IN
THE
SOLID
229
CONTENTS
IX
9.4.1
LI/SOLID-ELECTROLYTE
INTERFACE:
CHEMICAL,
ELECTROCHEMICAL,
AND
MECHANICAL
CONSIDERATIONS,
INCLUDING
MITIGATION
STRATEGIES
230
9.4.2
LI
DENDRITE
FORMATION
AND
PROPAGATION
IN
SOLID
ELECTROLYTES:
CHALLENGES
AND
STRATEGIES
237
9.5
OUTLOOK
AND
PERSPECTIVE
242
ACKNOWLEDGMENTS
244
CONTRIBUTIONS
244
ETHICS
DECLARATIONS
244
REFERENCES
244
10
DEGRADATION
AND
LIFE
PERFORMANCE
OF
TRANSITION
METAL
OXIDE
CATHODES
USED
IN
LITHIUM-ION
BATTERIES
257
SATISH
B.
CHIKKANNANAVAR,
JONG
H.
KIM,
AND
WANGMO
JUNG
10.1
INTRODUCTION
257
10.2
DEGRADATION
TRENDS
257
10.3
TRANSITION
METAL
OXIDE
CATHODES
260
10.3.1
SPINEL
CATHODES
260
10.3.2
NCM
SYSTEM
OF
CATHODES
262
10.3.3
NCMA
CATHODES
265
10.4
DEGRADATION
MECHANISM
266
10.5
CONCLUDING
REMARKS
268
REFERENCES
269
11
MECHANICAL
BEHAVIOR
OF
TRANSITION
METAL
OXIDE-BASED
BATTERY
MATERIALS
273
TRUONG
CAI,
JUNG
HWI
CHO,
AND
BRIAN
W.
SHELDON
11.1
INTRODUCTION
273
11.2
MECHANICAL
RESPONSES
TO
COMPOSITIONAL
CHANGES
274
11.2.1
VOLUME
CHANGES
AND
DEFORMATION
IN
ELECTRODE
PARTICLES
274
11.2.2
PARTICLE
FRACTURE
277
11.3
IMPACT
OF
STRAIN
ENERGY
ON
CHEMICAL
PHENOMENA
280
11.3.1
THERMODYNAMICS
280
11.3.2
TWO-PHASE
EQUILIBRIUM
283
11.4
SOLID
ELECTROLYTES
284
11.4.1
ELECTRODE/ELECTROLYTE
INTERFACES
284
11.4.2
ELECTROLYTE
FRACTURE
288
11.5
SUMMARY
293
REFERENCES
294
12
SOLID-STATE
NMR
AND
EPR
CHARACTERIZATION
OF
TRANSITION-METAL
OXIDES
FOR
ELECTROCHEMICAL
ENERGY
STORAGE
299
XIANG
LI,
MICHAEL
DECK,
AND
YAN-YAN
HU
12.1
INTRODUCTION
299
12.2
BRIEF
INTRODUCTION
OF
NMR
BASICS
301
12.2.1
NUCLEAR
SPINS
301
X
CONTENTS
12.2.2
NMR
SPIN
INTERACTIONS
301
12.2.3
PARAMAGNETIC
INTERACTIONS
AND
EXPERIMENTAL
APPROACHES
TO
ACHIEVE
HIGH
SPECTRAL
RESOLUTION
302
12.3
MULTINUCLEAR
NMR
STUDIES
OF
TRANSITION-METAL-OXIDE
CATHODES
305
12.3.1
LI
EXTRACTION
AND
INSERTION
DYNAMICS
305
12.3.2
O
EVOLUTION
312
12.4
EPR
STUDIES
314
12.5
SUMMARY
316
REFERENCES
316
13
/N
SITU
AND
IN
OPERANDO
NEUTRON
DIFFRACTION
OF
TRANSITION
METAL
OXIDES
FOR
ELECTROCHEMICAL
STORAGE
319
CHRISTOPHE
DIDIER,
ZAIPING
GUO,
BOHANG
SONG,
ASHFIA
HUQ,
AND
VANESSA
K.
PETERSON
13.1
INTRODUCTION
319
13.1.1
NEUTRON
DIFFRACTION
AND
TRANSITION
METAL
OXIDES
319
13.1.1.1
NEUTRON
REFLECTOMETRY
321
13.1.1.2
SMALL-ANGLE
NEUTRON
SCATTERING
322
13.1.1.3
QUASIELASTIC
AND
INELASTIC
NEUTRON
SCATTERING
322
13.1.2
NEUTRON
DIFFRACTION
INSTRUMENTATION
323
13.1.3
IN
SITU
AND
IN
OPERANDO
NEUTRON
DIFFRACTION
325
13.2
DEVICE
OPERATION
326
13.2.1
EXPERIMENTAL
DESIGN
AND
APPROACH
TO
THE
REAL-TIME
ANALYSIS
OF
BATTERY
MATERIALS
326
13.2.2
ADVANCEMENTS
IN
UNDERSTANDING
ELECTRODE
STRUCTURE
DURING
BATTERY
OPERATION
327
13.3
GAS
AND
TEMPERATURE
STUDIES
330
13.3.1
EXPERIMENTAL
DESIGN
AND
APPROACH
TO
THE
IN
SITU
STUDY
OF
SOLID
OXIDE
FUEL-CELL
(SOFC)
ELECTRODES
330
13.3.2
ADVANCEMENTS
IN
UNDERSTANDING
SOLID
OXIDE
FUEL-CELL
ELECTRODE
FUNCTION
331
13.4
MATERIALS
FORMATION
AND
SYNTHESIS
332
13.5
SHORT-RANGE
STRUCTURE
333
13.6
OUTLOOK
334
ACKNOWLEDGMENTS
335
REFERENCES
335
14
SYNCHROTRON
X-RAY
SPECTROSCOPY
AND
IMAGING
FOR
METAL
OXIDE
INTERCALATION
CATHODE
CHEMISTRY
343
CHIXIA
TIAN
AND
FENG
LIN
14.1
INTRODUCTION
343
14.2
X-RAY
ABSORPTION
SPECTROSCOPY
345
14.2.1
SOFT
X-RAY
ABSORPTION
SPECTROSCOPY
345
14.2.2
HARD
X-RAY
ABSORPTION
SPECTROSCOPY
352
14.3
REAL-SPACE
X-RAY
SPECTROSCOPIC
IMAGING
358
CONTENTS
XI
INDEX
411
14.3.1
14.3.2
14.4
2D
FULL-FIELD
X-RAY
IMAGING
358
X-RAY
TOMOGRAPHIC
IMAGING
362
CONCLUSION
368
REFERENCES
369
15
ATOMIC-SCALE
SIMULATIONS
OF
THE
SOLID
ELECTROLYTE
LI
7
LA
3
ZR
2
O
12
375
SEUNGHO
YU
AND
DONALD
J.
SIEGEL
15.1
15.1.1
15.1.2
15.1.3
15.1.4
15.2
15.3
15.4
INTRODUCTION
375
MOTIVATION
375
SOLID
ELECTROLYTES
376
LI
7
LA
3
ZR
2
O
12
(LLZO)
376
CHALLENGES
377
ELASTIC
PROPERTIES
OF
LI
7
LA
3
ZR
2
O
12
377
POTENTIAL
FAILURE
MODES
ARISING
FROM
LLZO
MICROSTRUCTURE
381
CONCLUSIONS
386
ACKNOWLEDGEMENTS
387
REFERENCES
387
16
MACHINE-LEARNING
AND
DATA-INTENSIVE
METHODS
FOR
ACCELERATING
THE
DEVELOPMENT
OF
RECHARGEABLE
BATTERY
CHEMISTRIES:
A
REVIEW
393
AUSTIN
D.
SENDEK,
EKIN
D.
CUBUK,
BRANDI
RANSOM,
JAGJIT
NANDA,
AND
EVAN
J.
REED
16.1
16.2
16.3
16.4
16.5
16.5.1
16.6
16.7
16.8
16.9
INTRODUCTION
393
MACHINE-LEARNING
METHODS
AND
ALGORITHMS
396
LITHIUM-ION-CONDUCTING
SOLID
ELECTROLYTES
399
LIQUID
ELECTROLYTES
402
CATHODE
DESIGN
402
ANODES
403
BEYOND
LITHIUM
403
ELECTROCHEMICAL
CAPACITORS
404
APPLICATION
OF
ML
IN
LIFE
CYCLE
DEGRADATION
404
CONCLUSION
AND
FUTURE
OUTLOOK
405
ACKNOWLEDGMENTS
405
REFERENCES
405 |
adam_txt |
V
CONTENTS
FOREWORD
XIII
1
AN
OVERVIEW
OF
TRANSITION
METAL
OXIDES
FOR
ELECTROCHEMICAL
ENERGY
STORAGE
1
ETHAN
C.
SELF,
DEVENDRASINH
DARBAR,
VERONICA
AUGUSTYN,
AND
JAGJIT
NANDA
1.1
FUNDAMENTALS
OF
ELECTROCHEMICAL
CELLS
1
1.2
LI-ION
BATTERIES:
BASIC
PRINCIPLES
AND
TMO
ELECTRODES
3
1.3
BRIEF
HISTORY
OF
LITHIUM-ION
BATTERIES
4
1.4
THE
ROLE
OF
ADVANCED
CHARACTERIZATION
AND
COMPUTING
RESOURCES
4
1.5
BEYOND
LITHIUM-ION
BATTERIES
5
ACKNOWLEDGMENTS
6
REFERENCES
6
2
METAL-ION-COUPLED
ELECTRON
TRANSFER
KINETICS
IN
INTERCALATION-BASED
TRANSITION
METAL
OXIDES
9
VICTORIA
A.
NIKITINA
AND
KEITH
J.
STEVENSON
2.1
INTRODUCTION
9
2.2
THERMODYNAMIC
CONTROL
11
2.3
DIFFUSIONAL
CONTROL
14
2.4
KINETIC
CONTROL
16
2.5
EFFECT
OF
SURFACE
LAYERS
ON
ION
TRANSFER
KINETICS
20
2.6
SLOW
DESOLVATION
AS
A
LIMITING
INTERCALATION
STEP
24
2.7
CONCLUDING
REMARKS
28
REFERENCES
28
3
NEXT-GENERATION
COBALT-FREE
CATHODES
-
A
PROSPECTIVE
SOLUTION
TO
THE
BATTERY
INDUSTRY
'
S
COBALT
PROBLEM
33
NITIN
MURALIDHARAN,
ETHAN
C.
SELF,
JAGJIT
NANDA,
AND
LLIAS
BELHAROUAK
3.1
INTRODUCTION
33
3.2
POTENTIAL
OF
COBALT-FREE
CATHODE
MATERIALS
35
3.3
LAYERED
CATHODES
35
3.3.1
CONVENTIONAL
LAYERED
CATHODES
35
3.3.2
BINARY
LAYERED
NI-RICH
CATHODE
MATERIALS
36
VI
CONTENTS
3.3.3
TERNARY
LAYERED
NI-RICH
CATHODE
MATERIALS
39
3.4
SPINEL
AND
OLIVINE
CATHODES
41
3.5
DISORDERED
ROCKSALT
(DRX)
CATHODES
43
3.6
CHALLENGES
IN
COMMERCIAL
ADOPTION
OF
NEW
COBALT-FREE
CHEMISTRIES
45
3.6.1
SYNTHESIS
OF
CATHODE
PRECURSORS
46
3.6.2
SYNTHESIS
OF
FINAL
CATHODE
POWDERS
47
3.6.3
ELECTRODE
FABRICATION
47
3.6.4
BATTERY
ASSEMBLY
47
3.7
SUMMARY
AND
PERSPECTIVE
48
ACKNOWLEDGMENTS
49
CONFLICT
OF
INTEREST
49
REFERENCES
49
4
TRANSITION
METAL
OXIDE
ANODES
FOR
ELECTROCHEMICAL
ENERGY
STORAGE
IN
LITHIUM
AND
SODIUM-LON
BATTERIES
55
SHAN
FANG,
DOMINIC
BRESSER,
AND
STEFANO
PASSERINI
4.1
INTRODUCTION
55
4.2
POTENTIAL
ADVANTAGES
AND
CHALLENGES
OF
THE
CONVERSION
MECHANISM
58
4.3
TRANSITION
METAL
OXIDES
AS
ANODE
MATERIALS
61
4.3.1
IRON
OXIDE
(FE
3
O
4
,
FE
2
O
3
)
61
4.3.2
COBALT
OXIDE
(COO,
CO
3
O
4
)
67
4.3.3
MANGANESE
OXIDE
(MNO,
MN
3
O
4
,
MNO
2
)
71
4.3.4
COPPER
OXIDE
(CU
2
O,
CUO)
78
4.3.5
NICKEL
OXIDE
(NIO)
82
4.3.6
RUTHENIUM
OXIDE
(RUO
2
)
86
4.3.7
OTHER
TRANSITION
METAL
OXIDES
88
4.4
SUMMARY
AND
OUTLOOK
88
REFERENCES
90
5
LAYERED
NA-ION
TRANSITION-METAL
OXIDE
ELECTRODES
FOR
SODIUM-LON
BATTERIES
101
BASKAR
SENTHILKUMAR,
CHRISTOPHER
S.
JOHNSON,
AND
PREMKUMAR
SENGUTTUVAN
5.1
INTRODUCTION
101
5.2
LAYERED
TRANSITION-METAL
OXIDES
102
5.2.1
STRUCTURAL
CLASSIFICATION
102
5.2.2
SINGLE
TRANSITION-METAL-BASED
LAYERED
TRANSITION-METAL
OXIDES
103
5.2.3
MIXED-METAL-BASED
LAYERED
TRANSITION-METAL
OXIDES
107
5.2.4
ANIONIC
REDOX
ACTIVITY
FOR
HIGH
CAPACITY
110
5.3
SUMMARY
AND
OUTLOOK
112
REFERENCES
114
CONTENTS
VII
6
ANIONIC
REDOX
REACTION
IN
LI-EXCESS
HIGH-CAPACITY
TRANSITION-METAL
OXIDES
121
NAOAKI
YABUUCHI
6.1
STOICHIOMETRIC
LAYERED
OXIDES
FOR
RECHARGEABLE
LITHIUM
BATTERIES
121
6.2
LI-EXCESS
ROCKSALT
OXIDES
AS
HIGH-CAPACITY
POSITIVE
ELECTRODE
MATERIALS
123
6.3
REVERSIBLE
AND
IRREVERSIBLE
ANIONIC
REDOX
FOR
LI
3
NBO
4
-
AND
LI
2
TIO
3
-BASED
OXIDES
126
6.4
ACTIVATION
OF
ANIONIC
REDOX
BY
CHEMICAL
BONDS
WITH
HIGH
IONIC
CHARACTERS
130
6.5
LI
4
MOO
5
AS
A
HOST
STRUCTURE
FOR
LITHIUM-EXCESS
OXIDES
131
6.6
EXTREMELY
REVERSIBLE
ANIONIC
REDOX
FOR
LI
2
RUO
3
SYSTEM
133
6.7
ANIONIC
REDOX
FOR
SODIUM-STORAGE
APPLICATIONS
135
6.8
FUTURE
PERSPECTIVES
OF
ANIONIC
REDOX
FOR
ENERGY-STORAGE
APPLICATIONS
138
REFERENCES
139
7
TRANSITION
METAL
OXIDES
IN
AQUEOUS
ELECTROLYTES
145
XIAOQIANG
SHAN
AND
XIAOWEI
TENG
7.1
INTRODUCTION:
OPPORTUNITIES
AND
CHALLENGES
OF
AQUEOUS
BATTERIES
145
7.2
ELECTROCHEMISTRY
OF
AQUEOUS
BATTERIES
146
7.2.1
POTENTIAL
WINDOW
146
7.2.2
DIVERSE
CHARGE
TRANSFER
AND
STORAGE
PROCESSES
IN
AQUEOUS
BATTERIES
148
7.2.2.1
OVERVIEW
OFVARIOUS
STORAGE
MECHANISMS
148
7.2.2.2
SEMI-QUANTITATIVE
ANALYSIS
OF
STORAGE
MECHANISM
FROM
SWEEPING
VOLTAMMETRY
ANALYSIS
151
7.2.2.3
STORAGE
MECHANISMS
IN
ELECTROLYTE
WITH
DIFFERENT
PH
VALUES
152
7.3
TRANSITION
METAL
OXIDES
FOR
AQUEOUS
EES
156
7.3.1
MANGANESE
COMPOUNDS
157
7.3.1.1
CRYSTAL
STRUCTURES
OF
MANGANESE
OXIDES
FOR
AQUEOUS
STORAGE
157
7.3.1.2
COMPOSITING
MANGANESE
OXIDES
WITH
OTHER
ADDITIVES
161
7.3.1.3
SURFACE
ENGINEERING
CRYSTAL
FACETS,
EDGE
SITES,
AND
BULK/NANO
SIZE
DOMAIN
161
7.3.1.4
DOPING
AND
DEFECT
CHEMISTRY
162
7.3.1.5
PRE-INTERCALATED
SPECIES
163
7.3.2
NI
COMPOUNDS
165
7.3.3
VANADIUM
COMPOUNDS
167
7.3.3.1
LI
OR
NA
VANADATES
169
7.3.4
IRON
COMPOUNDS
171
7.3.4.1
FE/FE
3
O
4
171
7.3.4.2
FE
2
O
3
/FEOOH
172
VIII
CONTENTS
7.4
CONCLUSION
173
ACKNOWLEDGMENTS
174
REFERENCES
174
8
NANOSTRUCTURED
TRANSITION
METAL
OXIDES
FOR
ELECTROCHEMICAL
ENERGY
STORAGE
183
SIMON
FLEISCHMANN,
ISHITA
KAMBOJ,
AND
VERONICA
AUGUSTYN
8.1
FUNDAMENTAL
ELECTROCHEMISTRY
OF
NANOSTRUCTURED
TMOS
183
8.1.1
THERMODYNAMICS
OF
CHARGE
STORAGE
IN
NANOSTRUCTURED
TMOS
183
8.1.2
KINETICS
OF
CHARGE
STORAGE
IN
NANOSTRUCTURED
TMOS
186
8.2
EMERGING
NANOSTRUCTURED
TMOS
189
8.2.1
NANOSTRUCTURED
TMO
CATHODES
FOR
LIBS
189
8.2.2
NANOSTRUCTURED
BINARY
TMOS
FOR
CONVERSION-TYPE
CHARGE
STORAGE
193
8.2.3
NANOSTRUCTURED
BINARY
TMOS
FOR
INTERCALATION-TYPE
CHARGE
STORAGE
195
8.3
IMPLEMENTATION
OF
NANOSTRUCTURED
TMOS
IN
ELECTRODE
ARCHITECTURES
198
8.3.1
ONE-DIMENSIONAL
AND
TWO-DIMENSIONAL
ARCHITECTURES
201
8.3.1.1
NANOWIRES
AND
NANOTUBES
201
8.3.2
THREE-DIMENSIONAL
ARCHITECTURES
203
8.3.2.1
ASSEMBLIES
203
83.2.2
FOAMS
205
83.23
AEROGELS
205
8.4
CONCLUSIONS
206
REFERENCES
206
9
INTERFACES
IN
OXIDE-BASED
LI
METAL
BATTERIES
213
MORAN
BALAISH,
KUN
JOONG
KIM,
MASAKI
WADAGUCHI,
LINGPING
KONG,
AND
JENNIFER
L.M.
RUPP
9.1
INTRODUCTION
213
9.2
SOLID
OXIDE
ELECTROLYTES
215
9.3
CATHODE:
TOWARD
TRUE
SOLID
216
9.3.1
ORIGIN
OF
INTERFACIAL
IMPEDANCE
AND
CURRENT
PRESSING
ISSUES
AT
CATHODE/SOLID
ELECTROLYTE
INTERFACES
217
9.3.1.1
INTERFACIAL
REACTION
DURING
CELL
FABRICATION
220
9.3.1.2
ELECTROCHEMICAL
OXIDATION
AND
CHEMICAL
REACTION
DURING
CYCLE
222
9.3.1.3
CHEMO-MECHANICAL
DEGRADATION
DURING
CYCLING
223
9.3.2
STRATEGIES
AND
APPROACHES
TOWARD
ENHANCED
STABILITY
AND
PERFORMANCE
224
9.3.2.1
CATHODE
COATING
224
93.2.2
GEOMETRIC
ARRANGEMENT
CONCERNS
AND
STRATEGIES
TOWARD
MAXIMIZING
REACTION
SITES
226
93.23
CONDUCTIVE
ADDITIVES
IN
SOLID-STATE
CATHODE
229
9.4
ANODE:
ADOPTING
LITHIUM
METAL
IN
THE
SOLID
229
CONTENTS
IX
9.4.1
LI/SOLID-ELECTROLYTE
INTERFACE:
CHEMICAL,
ELECTROCHEMICAL,
AND
MECHANICAL
CONSIDERATIONS,
INCLUDING
MITIGATION
STRATEGIES
230
9.4.2
LI
DENDRITE
FORMATION
AND
PROPAGATION
IN
SOLID
ELECTROLYTES:
CHALLENGES
AND
STRATEGIES
237
9.5
OUTLOOK
AND
PERSPECTIVE
242
ACKNOWLEDGMENTS
244
CONTRIBUTIONS
244
ETHICS
DECLARATIONS
244
REFERENCES
244
10
DEGRADATION
AND
LIFE
PERFORMANCE
OF
TRANSITION
METAL
OXIDE
CATHODES
USED
IN
LITHIUM-ION
BATTERIES
257
SATISH
B.
CHIKKANNANAVAR,
JONG
H.
KIM,
AND
WANGMO
JUNG
10.1
INTRODUCTION
257
10.2
DEGRADATION
TRENDS
257
10.3
TRANSITION
METAL
OXIDE
CATHODES
260
10.3.1
SPINEL
CATHODES
260
10.3.2
NCM
SYSTEM
OF
CATHODES
262
10.3.3
NCMA
CATHODES
265
10.4
DEGRADATION
MECHANISM
266
10.5
CONCLUDING
REMARKS
268
REFERENCES
269
11
MECHANICAL
BEHAVIOR
OF
TRANSITION
METAL
OXIDE-BASED
BATTERY
MATERIALS
273
TRUONG
CAI,
JUNG
HWI
CHO,
AND
BRIAN
W.
SHELDON
11.1
INTRODUCTION
273
11.2
MECHANICAL
RESPONSES
TO
COMPOSITIONAL
CHANGES
274
11.2.1
VOLUME
CHANGES
AND
DEFORMATION
IN
ELECTRODE
PARTICLES
274
11.2.2
PARTICLE
FRACTURE
277
11.3
IMPACT
OF
STRAIN
ENERGY
ON
CHEMICAL
PHENOMENA
280
11.3.1
THERMODYNAMICS
280
11.3.2
TWO-PHASE
EQUILIBRIUM
283
11.4
SOLID
ELECTROLYTES
284
11.4.1
ELECTRODE/ELECTROLYTE
INTERFACES
284
11.4.2
ELECTROLYTE
FRACTURE
288
11.5
SUMMARY
293
REFERENCES
294
12
SOLID-STATE
NMR
AND
EPR
CHARACTERIZATION
OF
TRANSITION-METAL
OXIDES
FOR
ELECTROCHEMICAL
ENERGY
STORAGE
299
XIANG
LI,
MICHAEL
DECK,
AND
YAN-YAN
HU
12.1
INTRODUCTION
299
12.2
BRIEF
INTRODUCTION
OF
NMR
BASICS
301
12.2.1
NUCLEAR
SPINS
301
X
CONTENTS
12.2.2
NMR
SPIN
INTERACTIONS
301
12.2.3
PARAMAGNETIC
INTERACTIONS
AND
EXPERIMENTAL
APPROACHES
TO
ACHIEVE
HIGH
SPECTRAL
RESOLUTION
302
12.3
MULTINUCLEAR
NMR
STUDIES
OF
TRANSITION-METAL-OXIDE
CATHODES
305
12.3.1
LI
EXTRACTION
AND
INSERTION
DYNAMICS
305
12.3.2
O
EVOLUTION
312
12.4
EPR
STUDIES
314
12.5
SUMMARY
316
REFERENCES
316
13
/N
SITU
AND
IN
OPERANDO
NEUTRON
DIFFRACTION
OF
TRANSITION
METAL
OXIDES
FOR
ELECTROCHEMICAL
STORAGE
319
CHRISTOPHE
DIDIER,
ZAIPING
GUO,
BOHANG
SONG,
ASHFIA
HUQ,
AND
VANESSA
K.
PETERSON
13.1
INTRODUCTION
319
13.1.1
NEUTRON
DIFFRACTION
AND
TRANSITION
METAL
OXIDES
319
13.1.1.1
NEUTRON
REFLECTOMETRY
321
13.1.1.2
SMALL-ANGLE
NEUTRON
SCATTERING
322
13.1.1.3
QUASIELASTIC
AND
INELASTIC
NEUTRON
SCATTERING
322
13.1.2
NEUTRON
DIFFRACTION
INSTRUMENTATION
323
13.1.3
IN
SITU
AND
IN
OPERANDO
NEUTRON
DIFFRACTION
325
13.2
DEVICE
OPERATION
326
13.2.1
EXPERIMENTAL
DESIGN
AND
APPROACH
TO
THE
REAL-TIME
ANALYSIS
OF
BATTERY
MATERIALS
326
13.2.2
ADVANCEMENTS
IN
UNDERSTANDING
ELECTRODE
STRUCTURE
DURING
BATTERY
OPERATION
327
13.3
GAS
AND
TEMPERATURE
STUDIES
330
13.3.1
EXPERIMENTAL
DESIGN
AND
APPROACH
TO
THE
IN
SITU
STUDY
OF
SOLID
OXIDE
FUEL-CELL
(SOFC)
ELECTRODES
330
13.3.2
ADVANCEMENTS
IN
UNDERSTANDING
SOLID
OXIDE
FUEL-CELL
ELECTRODE
FUNCTION
331
13.4
MATERIALS
FORMATION
AND
SYNTHESIS
332
13.5
SHORT-RANGE
STRUCTURE
333
13.6
OUTLOOK
334
ACKNOWLEDGMENTS
335
REFERENCES
335
14
SYNCHROTRON
X-RAY
SPECTROSCOPY
AND
IMAGING
FOR
METAL
OXIDE
INTERCALATION
CATHODE
CHEMISTRY
343
CHIXIA
TIAN
AND
FENG
LIN
14.1
INTRODUCTION
343
14.2
X-RAY
ABSORPTION
SPECTROSCOPY
345
14.2.1
SOFT
X-RAY
ABSORPTION
SPECTROSCOPY
345
14.2.2
HARD
X-RAY
ABSORPTION
SPECTROSCOPY
352
14.3
REAL-SPACE
X-RAY
SPECTROSCOPIC
IMAGING
358
CONTENTS
XI
INDEX
411
14.3.1
14.3.2
14.4
2D
FULL-FIELD
X-RAY
IMAGING
358
X-RAY
TOMOGRAPHIC
IMAGING
362
CONCLUSION
368
REFERENCES
369
15
ATOMIC-SCALE
SIMULATIONS
OF
THE
SOLID
ELECTROLYTE
LI
7
LA
3
ZR
2
O
12
375
SEUNGHO
YU
AND
DONALD
J.
SIEGEL
15.1
15.1.1
15.1.2
15.1.3
15.1.4
15.2
15.3
15.4
INTRODUCTION
375
MOTIVATION
375
SOLID
ELECTROLYTES
376
LI
7
LA
3
ZR
2
O
12
(LLZO)
376
CHALLENGES
377
ELASTIC
PROPERTIES
OF
LI
7
LA
3
ZR
2
O
12
377
POTENTIAL
FAILURE
MODES
ARISING
FROM
LLZO
MICROSTRUCTURE
381
CONCLUSIONS
386
ACKNOWLEDGEMENTS
387
REFERENCES
387
16
MACHINE-LEARNING
AND
DATA-INTENSIVE
METHODS
FOR
ACCELERATING
THE
DEVELOPMENT
OF
RECHARGEABLE
BATTERY
CHEMISTRIES:
A
REVIEW
393
AUSTIN
D.
SENDEK,
EKIN
D.
CUBUK,
BRANDI
RANSOM,
JAGJIT
NANDA,
AND
EVAN
J.
REED
16.1
16.2
16.3
16.4
16.5
16.5.1
16.6
16.7
16.8
16.9
INTRODUCTION
393
MACHINE-LEARNING
METHODS
AND
ALGORITHMS
396
LITHIUM-ION-CONDUCTING
SOLID
ELECTROLYTES
399
LIQUID
ELECTROLYTES
402
CATHODE
DESIGN
402
ANODES
403
BEYOND
LITHIUM
403
ELECTROCHEMICAL
CAPACITORS
404
APPLICATION
OF
ML
IN
LIFE
CYCLE
DEGRADATION
404
CONCLUSION
AND
FUTURE
OUTLOOK
405
ACKNOWLEDGMENTS
405
REFERENCES
405 |
any_adam_object | 1 |
any_adam_object_boolean | 1 |
author2 | Nanda, Jagjit Augustyn, Veronica |
author2_role | edt edt |
author2_variant | j n jn v a va |
author_GND | (DE-588)1082356263 (DE-588)1196732167 |
author_facet | Nanda, Jagjit Augustyn, Veronica |
building | Verbundindex |
bvnumber | BV048250194 |
classification_rvk | VN 6050 |
ctrlnum | (OCoLC)1345281242 (DE-599)DNB1228645264 |
discipline | Chemie / Pharmazie |
discipline_str_mv | Chemie / Pharmazie |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a22000008c 4500</leader><controlfield tag="001">BV048250194</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221207</controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">220601s2022 gw a||| |||| 00||| eng d</controlfield><datafield tag="015" ind1=" " ind2=" "><subfield code="a">21,N10</subfield><subfield code="2">dnb</subfield></datafield><datafield tag="016" ind1="7" ind2=" "><subfield code="a">1228645264</subfield><subfield code="2">DE-101</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783527344932</subfield><subfield code="c">hbk.</subfield><subfield code="9">978-3-527-34493-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3527344934</subfield><subfield code="9">3-527-34493-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1345281242</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)DNB1228645264</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">gw</subfield><subfield code="c">XA-DE-BW</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-11</subfield><subfield code="a">DE-703</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VN 6050</subfield><subfield code="0">(DE-625)147593:253</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transition metal oxides for electrochemical energy storage</subfield><subfield code="c">edited by Jagjit Nanda and Veronica Augustyn ; with a foreword by Michael Stanley Whittingham</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Weinheim</subfield><subfield code="b">Wiley-VCH</subfield><subfield code="c">[2022]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xiv, 418 Seiten</subfield><subfield code="b">Illustrationen, Diagramme (teilweise farbig)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Übergangsmetalloxide</subfield><subfield code="0">(DE-588)4186583-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Batterie</subfield><subfield code="0">(DE-588)4004687-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analytical Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Analytische Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Chemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electronic Materials</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Elektronische Materialien</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Energy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hydrogen, Batteries & Fuel Cells</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materials Science</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Materialwissenschaften</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Wasserstoff, Batterien u. Brennstoffzellen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CH10: Analytische Chemie</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">EG32: Wasserstoff, Batterien u. Brennstoffzellen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">MS40: Elektronische Materialien</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Übergangsmetalloxide</subfield><subfield code="0">(DE-588)4186583-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Batterie</subfield><subfield code="0">(DE-588)4004687-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nanda, Jagjit</subfield><subfield code="0">(DE-588)1082356263</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Augustyn, Veronica</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Whittingham, M. Stanley</subfield><subfield code="d">1941-</subfield><subfield code="0">(DE-588)1196732167</subfield><subfield code="4">wpr</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">Wiley-VCH</subfield><subfield code="0">(DE-588)16179388-5</subfield><subfield code="4">pbl</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, PDF</subfield><subfield code="z">978-3-527-81722-1</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, EPUB</subfield><subfield code="z">978-3-527-81724-5</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe, oBook</subfield><subfield code="z">978-3-527-81725-2</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">X:MVB</subfield><subfield code="u">http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34493-2/</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">DNB Datenaustausch</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033630517&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033630517</subfield></datafield></record></collection> |
genre | (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV048250194 |
illustrated | Illustrated |
index_date | 2024-07-03T19:56:52Z |
indexdate | 2024-12-12T15:01:32Z |
institution | BVB |
institution_GND | (DE-588)16179388-5 |
isbn | 9783527344932 3527344934 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033630517 |
oclc_num | 1345281242 |
open_access_boolean | |
owner | DE-11 DE-703 |
owner_facet | DE-11 DE-703 |
physical | xiv, 418 Seiten Illustrationen, Diagramme (teilweise farbig) |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Wiley-VCH |
record_format | marc |
spelling | Transition metal oxides for electrochemical energy storage edited by Jagjit Nanda and Veronica Augustyn ; with a foreword by Michael Stanley Whittingham Weinheim Wiley-VCH [2022] © 2022 xiv, 418 Seiten Illustrationen, Diagramme (teilweise farbig) txt rdacontent n rdamedia nc rdacarrier Übergangsmetalloxide (DE-588)4186583-2 gnd rswk-swf Batterie (DE-588)4004687-4 gnd rswk-swf Analytical Chemistry Analytische Chemie Chemie Chemistry Electronic Materials Elektronische Materialien Energie Energy Hydrogen, Batteries & Fuel Cells Materials Science Materialwissenschaften Wasserstoff, Batterien u. Brennstoffzellen CH10: Analytische Chemie EG32: Wasserstoff, Batterien u. Brennstoffzellen MS40: Elektronische Materialien (DE-588)4143413-4 Aufsatzsammlung gnd-content Übergangsmetalloxide (DE-588)4186583-2 s Batterie (DE-588)4004687-4 s DE-604 Nanda, Jagjit (DE-588)1082356263 edt Augustyn, Veronica edt Whittingham, M. Stanley 1941- (DE-588)1196732167 wpr Wiley-VCH (DE-588)16179388-5 pbl Erscheint auch als Online-Ausgabe, PDF 978-3-527-81722-1 Erscheint auch als Online-Ausgabe, EPUB 978-3-527-81724-5 Erscheint auch als Online-Ausgabe, oBook 978-3-527-81725-2 X:MVB http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34493-2/ DNB Datenaustausch application/pdf http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033630517&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA Inhaltsverzeichnis |
spellingShingle | Transition metal oxides for electrochemical energy storage Übergangsmetalloxide (DE-588)4186583-2 gnd Batterie (DE-588)4004687-4 gnd |
subject_GND | (DE-588)4186583-2 (DE-588)4004687-4 (DE-588)4143413-4 |
title | Transition metal oxides for electrochemical energy storage |
title_auth | Transition metal oxides for electrochemical energy storage |
title_exact_search | Transition metal oxides for electrochemical energy storage |
title_exact_search_txtP | Transition metal oxides for electrochemical energy storage |
title_full | Transition metal oxides for electrochemical energy storage edited by Jagjit Nanda and Veronica Augustyn ; with a foreword by Michael Stanley Whittingham |
title_fullStr | Transition metal oxides for electrochemical energy storage edited by Jagjit Nanda and Veronica Augustyn ; with a foreword by Michael Stanley Whittingham |
title_full_unstemmed | Transition metal oxides for electrochemical energy storage edited by Jagjit Nanda and Veronica Augustyn ; with a foreword by Michael Stanley Whittingham |
title_short | Transition metal oxides for electrochemical energy storage |
title_sort | transition metal oxides for electrochemical energy storage |
topic | Übergangsmetalloxide (DE-588)4186583-2 gnd Batterie (DE-588)4004687-4 gnd |
topic_facet | Übergangsmetalloxide Batterie Aufsatzsammlung |
url | http://www.wiley-vch.de/publish/dt/books/ISBN978-3-527-34493-2/ http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=033630517&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA |
work_keys_str_mv | AT nandajagjit transitionmetaloxidesforelectrochemicalenergystorage AT augustynveronica transitionmetaloxidesforelectrochemicalenergystorage AT whittinghammstanley transitionmetaloxidesforelectrochemicalenergystorage AT wileyvch transitionmetaloxidesforelectrochemicalenergystorage |