Effective results and methods for Diophantine equations over finitely generated domains:
"This book is devoted to Diophantine equations where the solutions are taken from an integral domain of characteristic 0 that is finitely generated over Z, that is a domain of the shape Z[z1; : : : ; zr] with quotient field of characteristic 0, where the generators z1; : : : ; zr may be algebra...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Buch |
Sprache: | English |
Veröffentlicht: |
Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore
Cambridge University Press
2022
|
Schriftenreihe: | London mathematical society lecture note series
475 |
Schlagworte: | |
Online-Zugang: | Rezension |
Zusammenfassung: | "This book is devoted to Diophantine equations where the solutions are taken from an integral domain of characteristic 0 that is finitely generated over Z, that is a domain of the shape Z[z1; : : : ; zr] with quotient field of characteristic 0, where the generators z1; : : : ; zr may be algebraic or transcendental over Q. For instance, the ring of integers and the rings of S-integers of a number field are finitely generated domains where all generators are algebraic. Our aim is to prove effective finiteness results for certain classes of Diophantine equations, i.e., results that not only show that the equations from the said classes have only finitely many solutions, but whose proofs provide methods to determine the solutions in principle"-- |
Beschreibung: | Includes bibliographical references and index |
Beschreibung: | xxiv, 216 Seiten |
ISBN: | 9781009005852 |
Internformat
MARC
LEADER | 00000nam a2200000 cb4500 | ||
---|---|---|---|
001 | BV048240565 | ||
003 | DE-604 | ||
005 | 20230810 | ||
007 | t | ||
008 | 220524s2022 xxk |||| 00||| eng d | ||
020 | |a 9781009005852 |q Paperback |9 978-1-009-00585-2 | ||
024 | 7 | |a 10.1017/9781009042109 |2 doi | |
024 | 3 | |a 9781009005852 | |
035 | |a (OCoLC)1315744423 | ||
035 | |a (DE-599)KXP1788052927 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
044 | |a xxk |c XA-GB | ||
049 | |a DE-91G | ||
050 | 0 | |a QA242 | |
082 | 0 | |a 512.7/2 | |
084 | |a MAT 102 |2 stub | ||
100 | 1 | |a Evertse, Jan Hendrik |d 1958- |e Verfasser |0 (DE-588)141300558 |4 aut | |
245 | 1 | 0 | |a Effective results and methods for Diophantine equations over finitely generated domains |c Jan-Hendrik Evertse (Leiden University), Kálmán Győry (University of Debrecen) |
264 | 1 | |a Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore |b Cambridge University Press |c 2022 | |
300 | |a xxiv, 216 Seiten | ||
336 | |b txt |2 rdacontent | ||
337 | |b n |2 rdamedia | ||
338 | |b nc |2 rdacarrier | ||
490 | 1 | |a London mathematical society lecture note series |v 475 | |
500 | |a Includes bibliographical references and index | ||
520 | 3 | |a "This book is devoted to Diophantine equations where the solutions are taken from an integral domain of characteristic 0 that is finitely generated over Z, that is a domain of the shape Z[z1; : : : ; zr] with quotient field of characteristic 0, where the generators z1; : : : ; zr may be algebraic or transcendental over Q. For instance, the ring of integers and the rings of S-integers of a number field are finitely generated domains where all generators are algebraic. Our aim is to prove effective finiteness results for certain classes of Diophantine equations, i.e., results that not only show that the equations from the said classes have only finitely many solutions, but whose proofs provide methods to determine the solutions in principle"-- | |
650 | 0 | 7 | |a Diophantische Gleichung |0 (DE-588)4012386-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Zahlentheorie |0 (DE-588)4067277-3 |2 gnd |9 rswk-swf |
653 | 0 | |a Diophantine equations | |
653 | 0 | |a Diophantine analysis | |
653 | 0 | |a Number theory | |
653 | 0 | |a MATHEMATICS / Number Theory | |
689 | 0 | 0 | |a Zahlentheorie |0 (DE-588)4067277-3 |D s |
689 | 0 | 1 | |a Diophantische Gleichung |0 (DE-588)4012386-8 |D s |
689 | 0 | |5 DE-604 | |
700 | 1 | |a Győry, Kálmán |d 1940- |e Verfasser |0 (DE-588)1077834187 |4 aut | |
776 | 0 | 8 | |i Erscheint auch als |n Online-Ausgabe |z 978-1-009-04210-9 |
776 | 0 | 8 | |i Erscheint auch als |a Evertse, Jan-Hendrik |t Effective Results and Methods for Diophantine Equations over Finitely Generated Domains |d Cambridge : Cambridge University Press, 2022 |h 1 online resource (242 pages) |n Online-Ausgabe |z 978-1-009-05003-6 |
830 | 0 | |a London mathematical society lecture note series |v 475 |w (DE-604)BV000000130 |9 475 | |
856 | 4 | 2 | |u https://zbmath.org/?q=an%3A7504319 |y zbMATH |3 Rezension |
999 | |a oai:aleph.bib-bvb.de:BVB01-033621067 |
Datensatz im Suchindex
_version_ | 1804184029975543808 |
---|---|
adam_txt | |
any_adam_object | |
any_adam_object_boolean | |
author | Evertse, Jan Hendrik 1958- Győry, Kálmán 1940- |
author_GND | (DE-588)141300558 (DE-588)1077834187 |
author_facet | Evertse, Jan Hendrik 1958- Győry, Kálmán 1940- |
author_role | aut aut |
author_sort | Evertse, Jan Hendrik 1958- |
author_variant | j h e jh jhe k g kg |
building | Verbundindex |
bvnumber | BV048240565 |
callnumber-first | Q - Science |
callnumber-label | QA242 |
callnumber-raw | QA242 |
callnumber-search | QA242 |
callnumber-sort | QA 3242 |
callnumber-subject | QA - Mathematics |
classification_tum | MAT 102 |
ctrlnum | (OCoLC)1315744423 (DE-599)KXP1788052927 |
dewey-full | 512.7/2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.7/2 |
dewey-search | 512.7/2 |
dewey-sort | 3512.7 12 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
discipline_str_mv | Mathematik |
format | Book |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03044nam a2200529 cb4500</leader><controlfield tag="001">BV048240565</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20230810 </controlfield><controlfield tag="007">t</controlfield><controlfield tag="008">220524s2022 xxk |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781009005852</subfield><subfield code="q">Paperback</subfield><subfield code="9">978-1-009-00585-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1017/9781009042109</subfield><subfield code="2">doi</subfield></datafield><datafield tag="024" ind1="3" ind2=" "><subfield code="a">9781009005852</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1315744423</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)KXP1788052927</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="044" ind1=" " ind2=" "><subfield code="a">xxk</subfield><subfield code="c">XA-GB</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91G</subfield></datafield><datafield tag="050" ind1=" " ind2="0"><subfield code="a">QA242</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7/2</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 102</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Evertse, Jan Hendrik</subfield><subfield code="d">1958-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)141300558</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Effective results and methods for Diophantine equations over finitely generated domains</subfield><subfield code="c">Jan-Hendrik Evertse (Leiden University), Kálmán Győry (University of Debrecen)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">xxiv, 216 Seiten</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">London mathematical society lecture note series</subfield><subfield code="v">475</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="520" ind1="3" ind2=" "><subfield code="a">"This book is devoted to Diophantine equations where the solutions are taken from an integral domain of characteristic 0 that is finitely generated over Z, that is a domain of the shape Z[z1; : : : ; zr] with quotient field of characteristic 0, where the generators z1; : : : ; zr may be algebraic or transcendental over Q. For instance, the ring of integers and the rings of S-integers of a number field are finitely generated domains where all generators are algebraic. Our aim is to prove effective finiteness results for certain classes of Diophantine equations, i.e., results that not only show that the equations from the said classes have only finitely many solutions, but whose proofs provide methods to determine the solutions in principle"--</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diophantine equations</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Diophantine analysis</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">Number theory</subfield></datafield><datafield tag="653" ind1=" " ind2="0"><subfield code="a">MATHEMATICS / Number Theory</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Zahlentheorie</subfield><subfield code="0">(DE-588)4067277-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diophantische Gleichung</subfield><subfield code="0">(DE-588)4012386-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Győry, Kálmán</subfield><subfield code="d">1940-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1077834187</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-009-04210-9</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="a">Evertse, Jan-Hendrik</subfield><subfield code="t">Effective Results and Methods for Diophantine Equations over Finitely Generated Domains</subfield><subfield code="d">Cambridge : Cambridge University Press, 2022</subfield><subfield code="h">1 online resource (242 pages)</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-1-009-05003-6</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">London mathematical society lecture note series</subfield><subfield code="v">475</subfield><subfield code="w">(DE-604)BV000000130</subfield><subfield code="9">475</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="u">https://zbmath.org/?q=an%3A7504319</subfield><subfield code="y">zbMATH</subfield><subfield code="3">Rezension</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-033621067</subfield></datafield></record></collection> |
id | DE-604.BV048240565 |
illustrated | Not Illustrated |
index_date | 2024-07-03T19:54:04Z |
indexdate | 2024-07-10T09:32:51Z |
institution | BVB |
isbn | 9781009005852 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-033621067 |
oclc_num | 1315744423 |
open_access_boolean | |
owner | DE-91G DE-BY-TUM |
owner_facet | DE-91G DE-BY-TUM |
physical | xxiv, 216 Seiten |
publishDate | 2022 |
publishDateSearch | 2022 |
publishDateSort | 2022 |
publisher | Cambridge University Press |
record_format | marc |
series | London mathematical society lecture note series |
series2 | London mathematical society lecture note series |
spelling | Evertse, Jan Hendrik 1958- Verfasser (DE-588)141300558 aut Effective results and methods for Diophantine equations over finitely generated domains Jan-Hendrik Evertse (Leiden University), Kálmán Győry (University of Debrecen) Cambridge, United Kingdom ; New York, NY, USA ; Port Melbourne, VIC, Australia ; New Delhi, India ; Singapore Cambridge University Press 2022 xxiv, 216 Seiten txt rdacontent n rdamedia nc rdacarrier London mathematical society lecture note series 475 Includes bibliographical references and index "This book is devoted to Diophantine equations where the solutions are taken from an integral domain of characteristic 0 that is finitely generated over Z, that is a domain of the shape Z[z1; : : : ; zr] with quotient field of characteristic 0, where the generators z1; : : : ; zr may be algebraic or transcendental over Q. For instance, the ring of integers and the rings of S-integers of a number field are finitely generated domains where all generators are algebraic. Our aim is to prove effective finiteness results for certain classes of Diophantine equations, i.e., results that not only show that the equations from the said classes have only finitely many solutions, but whose proofs provide methods to determine the solutions in principle"-- Diophantische Gleichung (DE-588)4012386-8 gnd rswk-swf Zahlentheorie (DE-588)4067277-3 gnd rswk-swf Diophantine equations Diophantine analysis Number theory MATHEMATICS / Number Theory Zahlentheorie (DE-588)4067277-3 s Diophantische Gleichung (DE-588)4012386-8 s DE-604 Győry, Kálmán 1940- Verfasser (DE-588)1077834187 aut Erscheint auch als Online-Ausgabe 978-1-009-04210-9 Erscheint auch als Evertse, Jan-Hendrik Effective Results and Methods for Diophantine Equations over Finitely Generated Domains Cambridge : Cambridge University Press, 2022 1 online resource (242 pages) Online-Ausgabe 978-1-009-05003-6 London mathematical society lecture note series 475 (DE-604)BV000000130 475 https://zbmath.org/?q=an%3A7504319 zbMATH Rezension |
spellingShingle | Evertse, Jan Hendrik 1958- Győry, Kálmán 1940- Effective results and methods for Diophantine equations over finitely generated domains London mathematical society lecture note series Diophantische Gleichung (DE-588)4012386-8 gnd Zahlentheorie (DE-588)4067277-3 gnd |
subject_GND | (DE-588)4012386-8 (DE-588)4067277-3 |
title | Effective results and methods for Diophantine equations over finitely generated domains |
title_auth | Effective results and methods for Diophantine equations over finitely generated domains |
title_exact_search | Effective results and methods for Diophantine equations over finitely generated domains |
title_exact_search_txtP | Effective results and methods for Diophantine equations over finitely generated domains |
title_full | Effective results and methods for Diophantine equations over finitely generated domains Jan-Hendrik Evertse (Leiden University), Kálmán Győry (University of Debrecen) |
title_fullStr | Effective results and methods for Diophantine equations over finitely generated domains Jan-Hendrik Evertse (Leiden University), Kálmán Győry (University of Debrecen) |
title_full_unstemmed | Effective results and methods for Diophantine equations over finitely generated domains Jan-Hendrik Evertse (Leiden University), Kálmán Győry (University of Debrecen) |
title_short | Effective results and methods for Diophantine equations over finitely generated domains |
title_sort | effective results and methods for diophantine equations over finitely generated domains |
topic | Diophantische Gleichung (DE-588)4012386-8 gnd Zahlentheorie (DE-588)4067277-3 gnd |
topic_facet | Diophantische Gleichung Zahlentheorie |
url | https://zbmath.org/?q=an%3A7504319 |
volume_link | (DE-604)BV000000130 |
work_keys_str_mv | AT evertsejanhendrik effectiveresultsandmethodsfordiophantineequationsoverfinitelygenerateddomains AT gyorykalman effectiveresultsandmethodsfordiophantineequationsoverfinitelygenerateddomains |